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Additional Supplementary Figures

Filter samples from the campholenic aldehyde chamber experiments were compared to
laboratory-generated SOA samples (a-pinene oxide/Os/acidic seed and a-pinene/0O3) and an
ambient filter (K-puszta) to establish possible formation pathways for specific oxidation
products, more specifically, to support that campholenic aldehyde can serve as their
precursor and that these oxidation products are atmospherically relevant. Therefore,
individual compounds were compared for matching retention times, and their MS? and MS>
fragmentation behaviours. Furthermore, compounds possibly containing carbonyl groups
were converted into corresponding DNPH-derivatives and were further examined in terms of
mass spectrometry as summarised in Table 5 (main text).



1. Chromatographic and mass spectral data for individual compounds

1.1 MW 156 (detected as mono-DNPH derivative at m/z 335)
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Figure SI-1. Extracted lon Chromatograms (EICs) at m/z 335 for DNPH-derivatised extracts
from campholenic aldehyde/Os, a-pinene oxide/Os/acidic seed and a-pinene/0O3 SOA and an
ambient filter sample (left) and corresponding chromatograms from the MS> study (right).

1.2 MW 172 (terpenylic acid)
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Figure SI-2. Extracted lon Chromatograms (EICs) at m/z 171 from campholenic aldehyde/Os,
a-pinene oxide/Os/acidic seed, a-pinene/0Os; SOA, an ambient filter sample, and terpenylic
acid.



1.3 MW 188 compounds

Three abundant m/z 187 compounds were detected from the campholenic aldehyde
ozonolysis SOA, which could also be observed from a a-pinene oxide/Os/acidic seed and a a-
pinene/03z experiment, and an ambient filter sample (Fig. SI-3). The compound eluting at
16.9 min is present at high abundance in the ambient filter sample, showing its atmospheric
importance.
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Figure SI-3. Extracted lon Chromatograms (EICs) at m/z 187 from campholenic aldehyde/Os,
a-pinene oxide/Os/acidic seed and a-pinene/O3 SOA, and an ambient filter sample.

Based on the product ion spectra (Fig. SI-4 — SI-6), the m/z 187 compound eluting at 16.9 min
showed the best agreement between the chamber SOA and ambient samples. Taking into
account this observation, the MW 188 compound eluting at 16.9 min is likely formed from
the further reaction of campholenic aldehyde. MS? and MS? data for this MW 188 compound
have been already reported by Yasmeen et al. (2011) from an ambient SOA sample. The MS
data obtained in the current study are in agreement with those reported in the cited study.
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Figure SI-4. (-)ESI-MS data for the m/z 187 compound eluting at 16.9 min.

Also the later-eluting MW 188 compound at 17.7 min and its fragmentation behaviour has
been already described in the literature from ambient samples (Yasmeen et al.,, 2011).

Although a matching chromatographic behaviour was observed between the laboratory-

generated SOA samples and the ambient sample in the present study, the product ion

spectra revealed a difference in their structures (Fig. SI-5).
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Figure SI-5. (-)ESI-MS data for the m/z 187 compound eluting at 17.7 min.

The MW 188 compound eluting at 19.5 min revealed a strong product ion at m/z 143 from
the MS? data that results from the loss of CO,. A comparison to the literature with the

reported MS? product ion spectrum suggests that this compound corresponds to a mono-
aldehydic precursor of 3-methyl-1,2,3-butanetricarboxylic acid (Claeys et al., 2009). Although
the obtained MS? product ion spectra agreed reasonably well for all the investigated SOA



samples in this study (Fig. SI-6, left), the MS? (m/z 187 = m/z 143) data revealed differences
(Fig. SI-6, right). Further studies are warranted to elucidate the chemical structure of this
MW 188 compound.
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Figure SI-6. (-)ESI-MS data for the m/z 187 compound eluting at 19.5 min.

1.4 MW 200 compounds

Two m/z 199 compounds were detected from the campholenic aldehyde/O; SOA sample,

which were also observed in the a-pinene/O; SOA and the ambient sample at a retention
time of 20.8 and 22.0 min (Fig. SI-7).
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Figure SI-7. Extracted lon Chromatograms (EICs) at m/z 199 from campholenic aldehyde/O3

and a-pinene/0O3 SOA, and an ambient filter sample.



The abundant peak at 20.6 min, which was solely observed from a-pinene ozonolysis and for
the K-puszta sample, was assigned to 10-hydroxy-pinonic acid, based on its chromatographic
behaviour and comparison to literature data (Claeys et al., 2013). Recorded spectra for the
compound eluting at 20.6 min in the a-pinene/0O3 SOA and the ambient sample are only
provided for completeness here, as 10-hydroxy-pinonic formation can be hardly explained
from campholenic aldehyde ozonolysis. However, it must be noted that slightly different
product ions were observed for the proposed 10-hydroxy-pinonic acid (RT 20.6 min), when
the a-pinene SOA and the ambient sample were compared (Fig. SI-8). Although the obtained
MS? and MS? data (m/z 199 - m/z 181) from the a-pinene/O; SOA appeared similar to the
published data (Yasmeen et al., 2012), small differences were noted in the ambient aerosol
sample. As shown in Figure SI-8, the MS? fragmentation revealed an additional m/z 127
product ion that was not present in o-pinene/Os; SOA in this study, and was also not
observed by Yasmeen et al. (2012), who investigated a-pinene/OH SOA. It might be possible
that a positional isomer of 10-hydroxy-pinonic acid co-elutes, leading to the additional
product ion observed in the MS? product ion spectrum for the ambient sample.
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Figure SI-8. MS? product ion spectra (left) of the m/z 199 compound eluting at 20.6 min,
assigned as 10-hydroxy pinonic acid, and the corresponding MS? data (right) from o-pinene
ozonolysis SOA and the ambient filter sample.

Two specific campholenic aldehyde m/z 199 compounds were also detected in the ambient
SOA sample, eluting at 20.8 and 22.0 min. Their MS? product ion spectra are provided in
Figures SI-9 and SI-10. The compound eluting at 20.8 min showed the loss of H,0 and CO, in
the MS? product ion spectra (Fig. SI-9, left). Although the resulting main product ions (m/z
181 and 155) were also observed in the MS? data from a-pinene SOA and the ambient filter
samples, additional product ions were observed in the latter ones. Based on the MS® data
(m/z 199 - m/z 181) clear differences between the m/z 199 compounds from campholenic
aldehyde and a-pinene SOA were observed (Fig. SI-9, right).
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Figure SI-9. MS? product ion spectra (left) of the m/z 199 compound eluting at 20.8 min, and
the corresponding MS? data (right) from campholenic aldehyde/O3; and a-pinene/O3 SOA,
and an ambient filter sample.

The m/z 199 compound eluting at 22 min in the campholenic aldehyde/O3; SOA sample could
also be observed from the ambient aerosol sample (Fig. SI-7) so that further studies on this
compound were performed. Similar product ion spectra were obtained upon MS? and MS>
(m/z 199 - m/z 181) fragmentation of campholenic aldehyde/O; SOA and the K-puszta
sample, as shown in Figure SI-10. The relative abundance of individual product ions was
slightly different; a possible reason for this phenomenon is that the internal energy of the
precursor ion is somewhat different. A structure for a possible MW 200 compound has been
proposed based on the reaction of ozone with campholenic aldehyde (Table 4, main text) in
the present study. Considering the observed product ions, which correspond to the loss of
H,0, CO; and CO, the proposed dicarbonyl-carboxylic acid structure seems reasonable.
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Figure SI-10. MS? product ion spectra (left) of the m/z 199 compound eluting at 22 min, and
corresponding MS® data (right) from campholenic aldehyde/O; SOA and an ambient filter
sample.



A possible fragmentation mechanism is given in Figure SI-11. However, as no authentic
standard was available and several m/z 199 compounds were detected from the
campholenic aldehyde SOA sample, the proposed structure should be regarded as tentative.
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Figure SI-11. Tentative structure and proposed fragmentation mechanism of the m/z 199
compound.

Corresponding DNPH-derivatives for MW 200 compounds

To support the presence of carbonyl groups in the MW 200 compound, the filter samples
were also derivatised with DNPH. Both, the corresponding mono-DNPH derivative (m/z 379)
and another di-DNPH derivative (m/z 559) were detected, pointing to the presence of
several and structurally different MW 200 compounds. A highly complex mixture was
obtained from the DNPH-derivatised filter samples, revealing several isomers. From the MS?
data it can be concluded that the m/z 379 compound eluting at 27.1 min is a DNPH-
derivatised compound as the typical DNPH fragments (m/z 182, 178, 152, and 122) were
detected (Fig. SI-12). Additionally, the loss of H,O and CO, was observed, consistent with a
hydroxy-carboxylic acid structure. As highly diverse individual mass spectra were recorded
from all the investigated aerosol samples in this study, no further structural information
could be derived. Interferences from the complex sample matrix might also be a reason for
the observed inconsistency in the mass spectral data.
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Figure SI-12. Extracted lon Chromatograms (EICs) of a mono-DNPH-derivatised compound
(m/z 379), corresponding to a MW 200 compound (left), from all the investigated filter
samples and its respective MS” product ion spectra (right).

A similarly diverse chromatogram and individual mass spectral data were obtained from a
possible di-DNPH-derivative (m/z 559) of a MW 200 compound (Fig. SI-13). The
fragmentation revealed the loss of H,O and CO,, which was dominant from the K-puszta
sample together with some other characteristic product ions, as shown in Figure SI-13
(right). Based on the proposed structure, given in Figure SI-11 for the non-derivatised
compound, the observed product ions from the fragmentation of the di-DNPH-derivative
m/z 559 can be explained (Fig. SI-14). Nevertheless, the proposed structure remains
tentative, as no authentic standard was available.
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Figure SI-13. Extracted lon Chromatograms (EICs) of the di-DNPH-derivatised compound
(m/z 559), corresponding to a MW 200 compound (left), and its respective MS? product ion
spectra (right).
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Figure SI-14. Proposed fragmentation mechanism for the di-DNPH-derivatised compound
(m/z 559), corresponding to a MW 200 compound.



1.5 MW 202 compound
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Figure SI-15. Extracted lon Chromatograms (EICs) at m/z 201 from campholenic aldehyde/Os;,
a-pinene oxide/Os/acidic seed, and a-pinene/0O3 SOA, and an ambient filter sample.
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Corresponding DNPH-derivatives for MW 202 compounds

Although a corresponding mono-DNPH-derivative (m/z 381) for a MW 202 compound could
be detected from the campholenic aldehyde ozonolysis and the a-pinene oxide/Os/acidic
seed experiment, its presence could not be confirmed from the a-pinene/O; SOA and an
ambient sample (Fig. SI-16, left). Nevertheless, from the MS? data (m/z 381) the loss of H,0
and CO, was observed (Fig. SI-16, right), corroborating its proposed structure as a Co-

carbonyl-dicarboxylic acid.
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Figure SI-16. Extracted lon Chromatograms (EICs) of the mono-DNPH-derivatised compound

(m/z 381), corresponding to a MW 202 compound (left), and the respective product ion

spectra (right) from the compound eluting at 27.4 min.
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Figure SI-17. Extracted lon Chromatograms (EICs) at m/z 215 from campholenic aldehyde/Os;,

a-pinene oxide/Os/acidic seed, a-pinene/03 SOA, and an ambient filter sample.



Corresponding DNPH-derivatives for MW 216 compounds

The derivatisation with DNPH enabled the detection of several corresponding mono-
derivatives (m/z 395) for MW 216 compounds. The compound with a RT of 28.2 min was
present in all the investigated filter samples (Fig. SI-18, left) but no clear agreement in terms
of its mass spectral fragmentation behaviour was observed (Fig. SI-18, right).
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Figure SI-18. Extracted lon Chromatograms (EICs) of the mono-DNPH-derivatised compound
(m/z 395), corresponding to a MW 216 compound (left), and their respective product ion
spectra (right).

1.7 MW 230 compound

A m/z 229 compound (C1oH140¢) was described recently as a specific campholenic aldehyde
tracer with an atmospheric abundance comparable to cis-pinic acid (linuma et al., 2013). It is
noted that slightly different results were obtained in the present study. Although an
abundant m/z 229 compound with a RT of 20.0 min was detected in both the campholenic
aldehyde/O3 and the a-pinene oxide/Os/acidic seed SOA samples, a slightly later-eluting
isomer (RT 20.5 min) was present in the a-pinene/Os; SOA and the ambient filter samples
(Fig. SI-19), where the later-eluting compound might correspond to a m/z 229 compound
described by Ng et al. (2007). Both the compounds eluting at 20.0 min and that at 20.5 min,
showed differences in their fragmentation behaviours (Fig. SI-20, top and bottom,
respectively) and hence differ in their chemical structure.
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Figure SI-19. Extracted lon Chromatograms (EICs) at m/z 229 obtained for campholenic
aldehyde/0s, a-pinene oxide/Os/acidic seed, and a-pinene/Os; SOA, and an ambient filter
sample, showing the presence of two isomeric m/z 229 compounds.
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Figure SI-20. MS? product ion spectra (left) of the m/z 229 compound eluting at 20.0 min
(top) and 20.5 min (down), and the corresponding MS® data (right) from campholenic
aldehyde/0s, a-pinene oxide/Os/acidic seed and a-pinene/O3 SOA, and an ambient filter
sample.



Corresponding DNPH-derivatives for MW 230 compounds

The derivatisation procedure enabled the detection of corresponding DNPH-derivatives that
were solely seen from the campholenic aldehyde oxidation and a-pinene oxide/Os/acidic
seed SOA samples. Both, mono-DNPH-derivatives at m/z 409 (Fig. SI-21), as well as di-DNPH-
derivatives at m/z 589 (Fig. SI-23, left) were detected.
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Figure SI-21. Extracted lon Chromatograms (EICs) of the mono-DNPH-derivatised compound
(m/z 409), corresponding to a MW 230 compound.

The detected two mono-DNPH-derivatised compounds at m/z 409 eluting at 25.4 min and
25.8 min, together with their respective MS? data, are shown in Figure SI-22 (left and right,
respectively).
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Figure SI-22. MS? product ion spectrum of two mono-DNPH-derivatised MW 230 compounds
(m/z 409 as DNPH-derivative) eluting at 25.4 (left) and 25.8 min (right).



The chromatogram and the mass spectral data obtained for the di-DNPH compound (m/z

589), corresponding to a MW 230 compound, are shown in Figure SI-23 (left and right,

respectively). It can be seen that the product ion spectra do not match well with each other.
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Figure SI-23. Extracted lon Chromatograms (EICs) of the di-DNPH derivatised compound (m/z
589), corresponding to a MW 230 compound (left), and its respective product ion spectra

from campholenic aldehyde/Os and a-pinene oxide/Os/acidic seed SOA (right).



1.8 MW 232 compounds (DTAA and an unknown)
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SI-24. Extracted lon Chromatograms (EICs) at m/z 231 from campholenic aldehyde/Os,

DTAA standard compound.

The additional m/z 231 isomer eluting at 22.4 min was detected in all the investigated filter
samples. Slightly different fragmentation behaviours were observed from the respective MS?
data. The m/z 231 compound detected from a-pinene/Os; SOA and the ambient sample

reveal
(-60u

ed an additional m/z 185 product ion (- 46 u) and an abundant product ion at m/z 171

), as shown in Figure SI-25 (left).
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Figure SI-25. MS? product ion spectra (left) of the unknown m/z 231 compound eluting at
22.4 min, and the corresponding MS® data (right) from campholenic aldehyde/Os, o-
pinene/03 and a-pinene oxide/0Os/acidic seed SOA, and an ambient filter sample.

Based on the slightly distinctive fragmentation behaviour, the unknown MW 232 compound
seems to be related to the compound observed in the ambient sample and the one detected
from a-pinene ozonolysis. It likely originates from another precursor compound than
campholenic aldehyde and further studies are warranted to elucidate the structure of and
gain insight into the formation mechanism of this yet unidentified oxidation product.
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