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ABSTRACT. Although spatial smoothing of fMRI data can serve multiple purposes, increasing the sensitiv-
ity of activation detection is probably its greatest benefit. However, this increased detection power comes
with a loss of specificity when non-adaptive smoothing (i.e. the standard in most software packages) is
used. Simulation studies and analysis of experimental data was performed using the R packages neu-
Rosim and fmri. In these studies, we systematically investigated the effect of spatial smoothing on the
power and number of false positives in two particular cases that are often encountered in fMRI research:
(1) Single condition activation detection for regions that differ in size, and (2) multiple condition activation
detection for neighbouring regions. Our results demonstrate that adaptive smoothing is superior in both
cases because less false positives are introduced by the spatial smoothing process compared to standard
Gaussian smoothing or FDR inference of unsmoothed data.

1. INTRODUCTION

For many neuroscientists, spatial smoothing of fMRI data has become an automatic preprocessing step.
The purpose of this smoothing procedure can be threefold. First, spatial smoothing moderates intersub-
ject variation in brain anatomy, especially when individual brains are transformed to a standard brain
space in order to allow intersubject comparison. Second, the smoothing of fMRI data will increase the
signal-to-noise ratio (SNR). Third, a voxel-based mass-univariate analysis of fMRI data calls for the need
of multiple testing corrections. In this context, spatial smoothing enhances random field theory (RFT)
based inference (see for example Worsley, 2003).

Although spatial smoothing, also referred to as spatial filtering, is mostly performed during the prepro-
cessing stage of the analysis, it is actually a crucial step in the whole data analysis process because of
its influence on the sensitivity and specificity of the activation detection analysis. The critical point here is
that we need a useful estimate of the required width of smoothing. Depending on the goal of smoothing,
guidelines vary substantially. To allow intersubject averaging, more smoothing might be necessary (e.g.
a Gaussian kernel full-width half-maximum (FWHM) of 8 mm, which is often the default value in software
packages) (Friston et al, 2007). In the context of increasing SNR and based on the matched filter theorem
(Rosenfeld and Kak, 1982), one wants to take into account the size of the region of interest (ROI), which
can vary roughly from 2 to 10 mm, or even more. Finally, the spatial smoothness needed for valid statisti-
cal inference can be rather small (around 4 mm will mostly be sufficient) (Friston et al, 1994). In terms of
maintaining spatial structure, it would be better to smooth as little as possible. A smoothing kernel width
that is at least twice the voxel size should be appropriate in almost all cases (Poldrack et al, 2011).

1.1. Non-adaptive smoothing. Spatial smoothing is applied by the convolution of each volume of the
fMRI dataset and a Gaussian kernel. In practice this translates to the signal in the volume being blurred
by averaging the data over all voxels in a spherical region. Based on the size of the FWHM of the
Gaussian kernel, local weights determine if a certain voxel is part of this region. In the case of non-
adaptive smoothing, these weights are acting as indicators on how far the smoothing kernel reaches in
space and are completely defined by the value of the FWHM.

Although spatial smoothing increases the sensitivity of activation detection, it also has a major disadvan-
tage, namely the decrease of spatial resolution. This results in loss of information on the spatial extent
and the shape of activated regions. Moreover, when the smoothing kernel is large compared to the acti-
vated area, the sensitivity of activation detection will decrease and false positives are introduced. Some
algorithms were developed to overcome this increase of false positive rate and decrease of spatial res-
olution, such as, for example, scale space methods (Poline and Mazoyer, 1994) and non-linear filtering
(Descombes et al, 1998). In this paper, we will focus on the most standard spatial smoothing method,
referred to as Gaussian smoothing, as an example of non-adaptive smoothing.
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1.2. No smoothing. In a reaction to the specificity loss caused by non-adap-tive smoothing, some re-
searchers omit the smoothing step and perform inference based on unsmoothed data. The result is that
activation detection is probably highly specific, but on the other hand might also be overly conservative.
First, there has to be enough signal/contrast in the data to be sensitive to the activation, and second,
inference that corrects for multiple comparisons based on RFT will be conservative due to unsufficient
smoothness in the data (Logan and Rowe, 2004). One solution to get more sensitive results out of un-
smoothed data would be to use False Discovery Rate control (FDR) (Benjamini and Hochberg, 1995),
since this method is known to be more sensitive (Logan and Rowe, 2004). We will consider both strate-
gies as alternatives to spatial smoothing of the data.

1.3. Adaptive smoothing. A second option to overcome the drawbacks of non-adaptive spatial smooth-
ing, and probably also of no smoothing, is to smooth adaptively. With this smoothing technique, the
smoothing width is not chosen a priori but based on the data by using for example adaptive region grow-
ing, nonstationary spatial Gaussian Markov random fields or adaptive weights smoothing (e.g. Lu et al,
2003; Harrison et al, 2008; Yue et al, 2010; Tabelow et al, 2006; Polzehl et al, 2010). We will discuss two
of these methods in more detail which will serve as examples of adaptive smoothing.

In 2006, Tabelow et al. introduced a structural adaptive smoothing procedure based on the propagation-
separation approach (Polzehl and Spokoiny, 2006). Without using any prior anatomical knowledge, the
methodology takes into account the size and shape of activated regions (Tabelow et al, 2006). During an
iterative process adaptive weighting schemes at each location are determined based on the parameter
estimates of the statistical parametric map (SPM). These weights separate areas of distinct parameter
values in particular activated voxels from non-activated voxels. This avoids the blurring bias at the bor-
ders of these areas typically observed in non-adaptive Gaussian filtering (see Tabelow et al, 2006, for
the technical details). Signal detection can then be performed, for instance, using thresholds based on
Random Field Theory (Adler, 2000; Worsley, 1994, 2003). Additionally, Polzehl et al (2010) presented
a new version of the structural adaptive smoothing algorithm, namely structural adaptive segmentation.
Their extended algorithm combines the estimation and smoothing step with the inference step based
on multiscale tests. Both simulations and analysis of real data showed higher sensitivity and specificity
compared to the original adaptive smoothing procedure (see Polzehl et al, 2010, for the technical details).

A major advantage of these adaptive smoothing techniques is that users only have to provide the maxi-
mum bandwidth of smoothing while the algorithm determines the optimal local weighting scheme. More-
over, when no spatial structure can be detected based on the functional activation, the smoothing proce-
dure reduces to non-adaptive Gaussian smoothing such that the SPM under the null hypothesis is again
approximately a Gaussian Random Field.

It should be noted that spatial smoothing is usually part of the preprocessing pipeline. However, pa-
rameter estimation, with the exception of prewhitening effects, is not effected by the spatial smoothing
and therefore the order of smoothing and parameter estimation is interchangeable (Tabelow et al, 2006).
Since the adaptive smoothing procedures rely heavily on the SNR in the data, parameter estimation be-
fore smoothing is necessary as a variance and dimension reduction step. Therefore, in this paper, all
smoothing procedures will be applied after parameter estimation.

1.4. Current study. Despite the fact that the disadvantages of non-adaptive spatial smoothing are
well-known and that new improved methods (e.g. adaptive smoothing) have been introduced, Gauss-
ian smoothing is still used almost exclusively, probably because it is widely available. In this paper, we
address two particular situations that are applicable to fMRI research and for these situations we provide
a systematic analysis of the dependence of the sensitivity and specificity on smoothing parameters in a
combination with inference methods. By applying spatial smoothing, we will increase the SNR resulting
in higher sensitivity, but, by comparing the results for different smoothing and inference methods, we will
look for an optimal trade-off between gaining sensitivity and losing specificity.
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In the first study (section 2), experimental tasks are considered that cause activation in multiple unequally
sized regions. When we want to take into account the spatial extent of these regions, the choice of the
value of the smoothing kernel width is non-trivial. Assuming that the actual size of the activated regions
is known (e.g. based on anatomical structures, localizer tasks or previous analyses of similar tasks),
the researcher is confronted with a choice of the FWHM value ranging from the size of the smallest
region to the size of the largest region. The former will result in undersmoothing the larger regions, while
choosing the latter will oversmooth the smaller regions. The second study (section 3) investigates the
effect of spatial smoothing on the specificity and sensitivity of activation detection when two neighbouring
regions are activated due to different tasks, conditions or contrasts. Here, we definitely want to avoid
oversmoothing because this could result in an unintended overlap between the activation regions.

For both studies, results for unsmoothed, non-adap-tively smoothed and adaptively smoothed data are
contrasted. For the unsmoothed data, RFT based Family-Wise Error (FWE) control and FDR control1

are compared for two reasons. First, since the latter inference method is known to be more sensitive
(Logan and Rowe, 2004), we will investigate its properties as an alternative to using spatial smoothing
to augment the power. Secondly, due to unsufficient smoothness, RFT inference is known to be too
conservative on unsmoothed data. For the smoothed data, inference is based on RFT (except for the
adaptive segmentation algorithm which used multiscale tests). Other inference methods, like for example
cluster-based inference are not used here as they have the same blurring problem as RFT when relying
on a Gaussian filter. Using more realistic simulations (as opposed to Tabelow et al, 2006; Polzehl et al,
2010) the empirical power and false positive rate (FPR) are assessed at several contrast-to-noise ratio
(CNR) values (section 2.1 and 3.1). As an illustration, the conditions from both studies are also applied
on real data (section 2.2 and 3.2).

2. STUDY 1: REGIONS WITH UNEQUAL SIZE

2.1. Simulation study.

2.1.1. Data generation and design. We simulated fMRI datasets of size 20×20×20×107 consisting of
2 mm3 isotropic voxels in R (R Development Core Team, 2010) using the package neuRosim (Welvaert
et al, 2011). The stimulus function was based on a block design with 3 activation blocks that each lasted
15 scans (see Figure 1 for a display of the timecourse). We modelled 2 activated regions (spheres with
diameter 6mm and 10mm respectively, see Figure 1). Rich noise was added including temporal corre-
lations (ρ = 0.3), spatial (ρ = 0.7) correlations and physiological noise (i.e. noise due to heart rate,
respiratory rate and task-related noise). Specifically, the noise consisted for 10% of white noise, 30%
temporally correlated noise, 20% low frequency drift, 10% physiological noise, 10% task-related noise
and 20% spatially correlated noise (see Welvaert and Rosseel, 2012, for more details on the noise gen-
eration). These raw data were then analysed in R using the package fmri (Tabelow and Polzehl, 2011).
Six smoothing conditions were considered: (Condition 1) no spatial smoothing, (Condition 2a) Gauss-
ian smoothing with the size of the smoothing kernel equal to the size of the smallest region (FWHM=6
mm), (Condition 2b) Gaussian smoothing with the size of the smoothing kernel equal to the average size
of the regions, corresponding to the default value (FWHM=8 mm), (Condition 2c) Gaussian smoothing
with the size of the smoothing kernel equal to the size of the largest regions (FWHM=10 mm), (Condition
3) structural adaptive smoothing with maximum bandwidth FWHM=10 mm, and (Con-dition 4) structural
adaptive segmentation with maximum bandwidth FWHM=10 mm. We also varied the CNR level (i.e., ratio
of changes in the signal due to the experiment and fluctuations due to noise) of the data between 0.02
and 0.5, and each dataset was replicated 100 times. For each replication, we assessed the power and

1We explicitly discard cluster-based FDR methods (e.g. Chumbley and Friston, 2009) because they are also dependent on
RFT inference.
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FIGURE 1. Ground truth activation in simulation study 1. Left: location of the activated
regions (grayscale values reflect position in space). Right: timecourse of the block de-
sign.

TABLE 1. Overview of the spatial smoothing and multiple corrections methods applied
in simulation study 1.

Condition Smoothing Inference

1a none Random Field Theory
1b none False Discovery Rate
2a non-adaptive (FWHM = 6 mm) Random Field Theory
2b non-adaptive (FWHM = 8 mm) Random Field Theory
2c non-adaptive (FWHM = 10 mm) Random Field Theory
3 adaptive smoothing Random Field Theory
4 adaptive segmentation Multiscale Tests

FPR of the detected activation based on a general linear model analysis including an AR(1) temporal
correlation model conducted using fmri (Tabelow and Polzehl, 2011).

The resulting statistical parametric maps (SPMs) were smoothed according to the six smoothing con-
ditions. So, in this context spatial smoothing is not considered to be part of the pre-processing steps
(Tabelow et al, 2006). Sensitivity was measured by means of the average power, which was calculated
as the ratio of correctly detected voxels and the total number of active voxels. Similarly, specificity was
measured as the average false positive rate (FPR) obtained by taking the ratio of falsely detected voxels
and the total number of non-active voxels. All results are corrected for multiple comparisons at p < 0.05
based on a Family-wise Error (FWE) correction using Gaussian Random Field theory in the no smooth-
ing, non-adaptive smoothing, and adaptive smoothing conditions (Worsley, 2003), and using multiscale
tests for the adaptive segmentation condition (Dümbgen and Spokoiny, 2001; Polzehl et al, 2010). As a
comparison and because RFT might not work properly on unsmoothed data due to unsufficient smooth-
ness, we also applied FDR based inference (Benjamini and Hochberg, 1995) on the non-smoothed data.
Table 1 provides an overview of the combination of the smoothing conditions and the multiple corrections
methods.
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FIGURE 2. Power (left) and FPR (right) results for the conditions in simulation study 1.
Table 1 presents an overview of the conditions.

2.1.2. Results. The results are presented in Figure 2. The power results on the left hand side of the
figure and the FPR results on the right hand show that there is indeed a difference between the smoothing
conditions. In the no smoothing condition combined with RFT inference, the overall power and FPR levels
are very low. This might be due to unsufficient smoothness in the data for the algorithm to work properly.
By comparison, using FDR control on the unsmoothed data already gives more power, so this will be
our baseline condition to compare the smoothing methods against. By spatially smoothing the data we
would like to obtain higher power, however, ideally, the FPR should stay as low as when no smoothing
is applied. Looking at the power results first (Figure 2, left panel), we observe higher power values for
all smoothing methods as expected. The differences between the conditions are rather small, although
it seems that adaptive segmentation results in the highest sensitivity levels, while Gaussian smoothing
with the smallest kernel (FWHM = 6 mm) provide a lower bound on the power results.

So, while the obtained power results are quite similar, more striking differences are observed for the FPR
results (figure 2, right panel). For the Gaussian smoothing conditions, more false positives are observed
with increasing kernel width and increasing CNR values. Sin-ce there are almost no false positives when
no smoothing is applied, the increased FPR rate observed in the Gaussian smoothing conditions is
completely attributable to the smoothing procedure. For example, with a medium-to-high CNR of 0.4,
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about 5% false positives are introduced by the Gaussian smoothing procedure in the case the default
value of the FWHM is used (i.e. 8 mm). In contrast, the FPR results for the adaptive smoothing and
adaptive segmentation techniques are very similar to the no smoothing condition; the number of false
positives is very low. Also in the case of no smoothing with FDR based inference, the number of false
positives appears to be well controlled.

Based on these simulation results, we can conclude that when there are multiple activated regions, higher
sensitivity can be obtained by either adaptive smoothing, adaptive segmentation or Gaussian smoothing,
compared to no smoothing (combined with either RFT or FDR). However, only the adaptive procedures
(adaptive smoothing and adaptive segmentation) succeed in maintaining the specificity while this greatly
decreases for the Gaussian smoothing conditions.

2.2. Real data. We applied the smoothing procedures as described in the simulation study above to ex-
perimental fMRI data from a passive viewing task used to localize hV5/MT+ involved in motion perception
(Seurinck et al, 2011). The data were acquired on a 3T Siemens TRIO MR scanner (Siemens Medical
Systems, Erlangen, Germany) with scanning parameters TR = 1940 ms, TE = 35 ms, flip angle = 80◦,
28 slices, slice thickness = 3 mm with a distance factor of 17%, FOV = 244 mm, matrix = 64 × 64.
We used 425 EPI images (corresponding to the first run) from a random subject in the dataset.

All images were motion corrected2 and normalized to the MNI152 template using SPM8. Spatial smooth-
ing was performed using the R package fmri (Tabelow and Polzehl, 2011) corresponding to the same
conditions as in simulation study 1. In a GLM analysis, we tested the contrast moving stimuli versus
static stimuli. We expect larger activation in hV5/MT+ for the moving stimuli compared to the static stim-
uli. Figure 3 shows the results for the different smoothing conditions. Since locator tasks have typically
high CNR, the results for the no smoothing condition (Figure 3a) already show clear bilateral activation in
hV5/MT+. Based on the activation detected in this condition, we distinguish two activated regions, one in
the right hemisphere, which we will refer to as the small region, and one in the left hemisphere, which we
will refer to as the large region. The size of the FWHM values for the spatial smoothing are in this case
based on the sizes of the detected regions in these unsmoothed data. When using FDR controlled infer-
ence on the unsmoothed data (Figure 3b), we observe more sensitive results, but surpisingly also more
activation outside the hV5/MT+ region which is improbable given the contrast. Non-adaptive (Gaussian)
smoothing with a kernel width equal to the small region (FWHM = 6) gives slightly extended activation
regions (Figure 3c). However, increasing the kernel width further results in loss of detected activation.
For Gaussian smoothing with FWHM = 8 mm, the activation in the right hemisphere is greatly diminished
(Figure 3d), and with FWHM = 10 mm, it disappears completely (Figure 3e). For this kernel width, also in
the left hemisphere only half of the activation survives the threshold. In contrast, the adaptive smoothing
techniques (Figure 3f-g) can produce slightly larger hV5/MT+ activations with increased sensitivity com-
pared to the no smoothing condition. This demonstrates that loss of activation due to oversmoothing is
overcome with adaptive smoothing. Additionally, while sensitivity to activation is increased for both adap-
tive procedures, the highest sensitivity levels are observed for adaptive segmentation. Concerning the
extra activation outside the hV5/MT+ regions that was detected in the unsmoothed - FDR condition, spa-
tial smoothing (all methods) succeeds in decreasing this activation, resulting in clearly localized activation
areas.

3. STUDY 2: NEIGHBOURING REGIONS

3.1. Simulation study.

2The influence of spatial smoothing in this stage was minimized by setting the FWHM of the Gaussian smoothing kernel to
1 mm, before estimating the realignment parameters.
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(a) No smoothing − RFT

 

(b) No smoothing − FDR

 

(c) Gauss. smoothing 

FWHM=6 mm

(d) Gauss. smoothing 

FWHM=8 mm

(e) Gauss. smoothing

FWHM=10 mm

(f) Adaptive smoothing

 

(g) Adaptive segmentation

 

FIGURE 3. Example slices (Left=Right orientation) showing hV5/MT+ activation in a
visual localizer experiment (Seurinck et al, 2011). Brighter colours indicate stronger
activation (based on the estimated signal of active voxels in case of adaptive segmen-
tation, and on the p-values otherwise).

3.1.1. Data generation and design. We simulated fMRI datasets of size 18×18×18×120 consisting of
2 mm3 isotropic voxels in R (R Development Core Team, 2010) using the package neuRosim (Welvaert
et al, 2011).

The experiment was a block design with 2 conditions. Both conditions contain 5 activation blocks of 10
scans which are alternately active. We modelled 2 activated regions (6 × 6 cubes) next to each other
accounting for activation based on condition 1 and 2, respectively (see Figure 4), and we used the same
noise model as in simulation study 1. We considered 4 conditions: (1) no smoothing with RFT inference,
(2) no smoothing with FDR inference, (3) Gaussian smoothing with FWHM=6 mm (i.e. congruent with the
size of the activated region), and (4) adaptive segmentation with the maximal bandwidth equal to 6 mm.
The CNR varied between 0.02 and 1, which are values common in fMRI research, and we simulated 100
replications of each dataset. The data were analyzed using the R package fmri (Tabelow and Polzehl,
2011) and the power and FPR were determined for each activation condition separately.
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FIGURE 4. Ground truth activation in simulation study 2. Left: location of the activated
regions. Right: timecourses of the block design.

3.1.2. Results. The results are shown in Figure 5. As in simulation study 1, in the no smoothing condition
using RFT inference, both power and FPR are very low for all CNR levels. Again inference based on RFT
might not be entirely correct because of unsufficient smoothness. The FDR based results show indeed
more power, while keeping the FPR low. This condition will serve again as our baseline. Looking at
the power results (figure 5, left panel), we see increasing power with increasing CNR levels for both
smoothing methods and in both conditions. For the tests of both conditions, Gaussian smoothing results
in slightly more power compared to adaptive segmentation for lower CNR values, but the reverse is the
case for higher CNR values. Overall, the differences in sensitivity between both smoothing techniques
are rather low. The FPR results (figure 5, right panel) demonstrate a better performance of adaptive
segmentation. This smoothing procedure can control the number of false positives very well in both
conditions. However, for the Gaussian smoothing condition, the FPR increases with increasing CNR
values. Based on these simulation results we would again recommend adaptive smoothing as the better
method to increase the sensitivity while maintaining specificity in the case of neighbouring regions.

3.2. Real data. Similar to the first simulation study, we demonstrate the impact of the smoothing proce-
dures on the results from experimental fMRI data for the case of neighbouring regions. We used the same
data as in the previous example (Seurinck et al, 2011), however now we focus on different contrasts. In
a GLM analysis we tested the following two contrasts: (1) motion versus rest, and (2) static versus rest.
These are again localizer contrasts indicated to find seperately active regions based on moving stimuli
on the one hand and static stimuli on the other hand. We do not expect any overlap between the regions
based on these contrasts. Similar to the second simulation study, we consider four conditions: (1) no
smoothing with RFT inference, (2) no smoothing with FDR inference, (3) Gaussian smoothing with the
FWHM matched to the size of the activated region (i.e. 8 mm), and (4) adaptive segmentation. Figure 6
shows results for the different smoothing procedures on the most representative slice. When the data are
not smoothed (upper panel), RFT inference results in clearly distinct activation clusters for both conditions
without any overlap. However, using FDR control shows a very different activity pattern. The static stimuli
contrast (yellow) results in widespread activation in several areas and also a lot of overlap (green) is
detected with the moving stimuli contrast (blue). Smoothing the data (lower panel) results in two clusters
that show small overlap in the Gaussian smoothing condition, despite the fact that the value of the FWHM
is slightly smaller than the size of the region (based on the unsmoothed data). In contrast, using adaptive
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FIGURE 5. Power (left panel) and FPR (right panel) results for each condition in simu-
lation study 2.

segmentation enables us to localize two activation regions for the moving and static stimuli separately
without any overlap.

Next to more specific activation detection in the adaptive segmentation condition, the sensitivity for ac-
tivation strength is also higher in this condition. Figure 7 shows the probability density functions of the
p values of active voxels for the non-smoothing and Gaussian smoothing conditions and the scaled es-
timated effect for the adaptive segmentation condition. Based on this figure, we can conclude that for
both estimated contrasts the activation evidence is highest for the adaptive segmentation, followed by
the unsmoothed data with FDR control.

As already demonstrated in the simulations, this real data example again indicates that adaptive segmen-
tation is successful in maintaining the original shape of the activated region (i.e., increasing specificity
compared to Gaussian smoothing), while increasing the overall sensitivity of activation detection at the
same time.
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FIGURE 6. Application of the smoothing conditions from simulation study 2 to the visual
localizer data from Seurinck et al (2011). Upper left: no smoothing (RFT); upper right: no
smoothing (FDR); lower left: Gaussian smoothing; lower right: adaptive segmentation.
Blue indicates activation for moving stimuli, yellow codes for activation for static stimuli
and green shows overlap between the two contrasts.

4. DISCUSSION

Despite the consensus on the benefits of spatial smoothing, the procedure is often used in a standard
preprocessing pipeline using default values, especially with regard to the kernel width. For example, only
8% of studies that report using spatial smoothing, describe the reason why a particular value of smooth-
ing kernel width is chosen (Carp, 2012). In case a justification is provided, the relation with the specific
selected smoothing kernel is at least vague. Poldrack et al (2011) give as a guideline that a smoothing
kernel width of at least twice the voxel size would be appropriate in many cases (pp. 51–52). A second
problem is that applying non-adaptive spatial smoothing comes at a cost of losing specificity. To accom-
modate this issue, the kernel width should be chosen wisely to achieve the desired increase in sensitivity
while maintaining an acceptable specificity level. Given these confusing guidelines, the drawbacks of
standard smoothing techniques and constant development of more advanced analyses, a systematic
evaluation of the impact of spatial smoothing is called for.

In this paper we focused on two specific scenarios often encountered in fMRI research, namely (1) activa-
tion in unequally sized regions and (2) activation in neighbouring regions. For both cases several methods
for smoothing and signal detection were systematically evaluated using realistic simulations. Based on
the power results, we can conclude that all spatial smoothing procedures are successful in increasing
the power of the activation detection analysis. Logan and Rowe (2004) have already demonstrated on
unsmoothed that FDR based inference is more sensitive compared to RFT inference, however the sen-
sitivity levels of the FDR method are not as high when compared to the smoothed data results. Although
increased sensitivity is desirable, our FPR analyses have shown that differences between smoothing
methods are quite dramatic for the specificity results. Applying non-adaptive smoothing will inevitably
lead to more false positives. In the case of unequally sized regions, the chosen value of the FWHM can
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FIGURE 7. Distribution of the p values of active voxels for moving stimuli and static stim-
uli respectively. Note that for the adaptive segmentation condition the scaled estimated
effect is plotted instead of a p value.

even increase this effect further. On the other hand, even when the FWHM can be matched to the size
of the activated region, an overlap will be created between neighbouring regions. Both effects were not
present when applying adaptive smoothing. Almost no false positives are introduced by these smoothing
methods.

A demonstration on real experimental data further accords with these results. However, it should be noted
that, while the FDR based inference of unsmoothed data in the simulation studies could control the FPR,
the same analysis of the real data showed more activation clusters that seemed improbable given the
localizer contrasts. Applying FDR inference on smoothed data might be a possible solution to control
this unwanted activation, but the method requires independent tests to be valid which is not the case
for smoothed data (although Benjamini and Yekutieli (2001) developed a correction for some forms of
dependency) or has to rely oRFT to make cluster-based inference (Chumbley and Friston, 2009).

With respect to the inference methods, we saw that, confirming the results of Polzehl et al (2010), adaptive
smoothing combined with multiscale tests (i.e. adaptive segmentation) results in higher sensitivity levels
compared to using RFT based inference. We focused on voxelwise inference using RFT corrected thresh-
olds but we expect that the results for other inference methods, such as cluster-based techniques, would
be similar because they would suffer from the same blurring effect induced by non-adaptive smoothing.
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Similarly, other adaptive smoothing techniques that are not considered here (e.g. Lu et al, 2003; Har-
rison et al, 2008; Yue et al, 2010), but also make use of the data to adaptively smooth the images, are
expected to behave in the same way. By using knowledge on shape and extent of the activated region
that is present in the data, these more advanced techniques will provide more reliable results with respect
to the obtained specificity.

By specifically focusing on two cases applicable to single-subject fMRI, we left the question of the impact
of spatial smoothing on higher-level analyses open for the time being. We used spatial smoothing in the
first place as a method to increase the SNR of the data, but in higher-level analyses spatial smoothing
is also used to make intersubject comparison more feasible. It is possible that some degree of specificity
loss is necessary to enable enough overlap between different subjects but this will be a subject for future
research.

5. CONCLUSIONS

More advanced adaptive smoothing procedures can be used as an inference strategy to obtain more
specificity for example with unequally sized or neighbouring regions. Compared to the widely used non-
adaptive spatial smoothing, adaptive smoothing has the advantage of controlling the number of false
positives while increasing the power. In addition, using adaptive segmentation methods always includes
a built-in multiple comparisons correction based on multiscale tests.

6. INFORMATION SHARING STATEMENT

The R packages neuRosim and fmri are open-source packages and can be downloaded and installed
from CRAN (http://cran.r-project.org).
SPM8 is a Matlab toolbox that is freely available from http://www.fil.ion.ucl.ac.uk/spm/software/spm8/.
The data used in the real data example are available upon request.
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