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Abstract

We consider an interacting particle system in continuous configuration space. The pair interaction

has an attractive part. We show that, at low density, the system behaves approximately like an ideal

mixture of clusters (droplets): we prove rigorous bounds (a) for the constrained free energy associated

with a given cluster size distribution, considered as an order parameter, (b) for the free energy, obtained

by minimising over the order parameter, and (c) for the minimising cluster size distributions. It is known

that, under suitable assumptions, the ideal mixture has a transition from a gas phase to a condensed

phase as the density is varied; our bounds hold both in the gas phase and in the coexistence region of

the ideal mixture.

1 Introduction and main results

The idea to treat an interacting particle gas as an approximately ideal mixture of droplets (clusters) is classical
and of wide-spread use in statistical mechanics, thermodynamics, and physical chemistry. It goes sometimes
under the name of Frenkel-Band theory of association equilibrium, see the textbook [H56]. From a more
mathematical perspective, this droplet picture has been used in investigations of percolation properties for
lattice and continuum systems [LP77, M75, GHM01].

This article’s main concern is to make this droplet picture rigorous. To the best of our knowledge, all
existing results work in the grand-canonical ensemble at sufficiently negative values of the chemical potential,
for which one expects that all clusters are finite. In contrast, we work in the canonical ensemble. This allows
us to give results that hold also in a regime where there might be infinite clusters.

In this work, we consider the free energies, the constrained free energies with fixed cluster size distri-
butions, and the optimal distribution itself and derive bounds for the deviation from the ideal model. These
bounds decay exponentially fast as a function of the inverse temperature at low densities, respectively they
decay as a power of the density.

1.1 The model

We consider a system x = (x1, . . . , xN) of N particles in a box Λ = [0, L]d with interaction given by

UN(x) = UN(x1, . . . , xN) =
∑

1≤i<j≤N

v(|xi − xj|), (1.1)

where v : [0,∞) → R ∪ {∞} is a Lennard-Jones-type potential. Our precise assumptions, which are the
same as in [JKM11], are as follows.

Assumption (V). The function v : [0,∞) → R ∪ {∞} satisfies the following.
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(1) v is finite except possibly for a hard core: there is a rhc ≥ 0 such that

∀r ≤ rhc : v(r) = ∞, ∀r > rhc : v(r) ∈ R.

(2) v is stable.

(3) The support of v is compact, more precisely, b := sup supp v < ∞.

(4) v has an attractive tail: there is a δ > 0 such that v(r) < 0 for all r ∈ (b− δ, b).

(5) v is continuous in [rhc,∞) ∩ (0,∞).

Throughout this paper, Assumption (V) will be in force without further mentioning. We consider the ther-
modynamic limit N, L → ∞ such that |Λ| = Ld = N/ρ for some particle density ρ ∈ (0,∞) at positive
and finite inverse temperature β ∈ (0,∞). The existence of the free energy per unit volume is well-known:
there is a ρcp ∈ (0,∞], the close-packing density, such that for all ρ ∈ (0, ρcp), the limit

f(β, ρ) := − 1

β
lim

N,L→∞,Ld=N/ρ

1

|Λ|
log
( 1

N !

∫
ΛN

e−βUN (x) dx
)
, β ∈ (0,∞) (1.2)

exists in R. In the following, we always assume that β ∈ (0,∞) and ρ ∈ (0, ρcp).

Our main concern is the cluster size distribution that is induced by the Gibbs measure as a random se-
quence. Fix R ∈ (b,∞). For a given configuration x = (x1, . . . , xN) ∈ ΛN , draw an edge between two
points xi and xj if their distance |xi − xj| is ≤ R. In this way, the configuration splits into connected com-
ponents, which we call clusters. Let Nk(x) be the number of k-clusters, i.e., components with k particles,
and let

ρk,Λ(x) :=
Nk(x)

|Λ|
be the number of k-clusters per unit volume. We consider the cluster size distribution ρΛ = (ρk,Λ)k∈N as a
random variable in the set of all sequences ρ = (ρk)k∈N ∈ [0,∞)N. One of the main results of [JKM11]
is the existence of a rate function f(β, ρ, ·) : [0,∞)N → R ∪ {∞} such that, in the above thermodynamic
limit,

− 1

β

1

|Λ|
log
( 1

N !

∫
ΛN

e−βUN (x)1l
{
ρΛ(x) ∈ ·

}
dx
)

=⇒ inf
ρ∈·

f(β, ρ, ρ), (1.3)

in the sense of a large-deviation principle. That is, the limit in (1.3) holds in the weak sense, and the level sets
of the rate function f(β, ρ, ·) are compact; in particular, f(β, ρ, ·) is lower semi-continuous. Furthermore,
f(β, ρ, ·) is convex. Moreover, if f(β, ρ, ρ) is finite, then necessarily

∑∞
k=1 kρk ≤ ρ. At low density ρ, the

converse is also true, i.e., f(β, ρ, ρ) < ∞ for any ρ such that
∑∞

k=1 kρk ≤ ρ. The relation with the free
energy given in (1.2) is

f(β, ρ) = min
{

f
(
β, ρ, ρ

) ∣∣∣ρ ∈ [0,∞)N,
∑
k∈N

kρk ≤ ρ
}

.

Hence, the minimiser(s) of f(β, ρ, ·) play an important role as the optimal configuration(s) of the system.
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1.2 The ideal-mixture model

We now introduce the main object in terms of which we will approximate the above model. The cluster
partition function of a k-cluster is introduced as

Zcl
k (β) :=

1

k!

∫
(Rd)k−1

e−βUk(0,x2,...,xk)1l
{
{0, x2, . . . , xk} connected

}
dx2 · · · dxk, (1.4)

and the associated cluster free energy per particle is f cl
k (β) := − 1

βk
log Zcl

k (β). It is known that its thermo-
dynamic limit,

f cl
∞(β) = lim

k→∞
f cl

k (β), (1.5)

exists in R. Indeed, this was proved in [DS84], given that (f cl
k (β))k∈N is bounded, and the boundedness of

(f cl
k (β))k∈N was derived in [DS84] in dimension d = 2 and d = 3 and in [JKM11, Lemma 4.3 and 4.5] in

all dimensions.

For ρ = (ρk)k∈N, let

f ideal(β, ρ, ρ) :=
∑
k∈N

kρkf
cl
k (β) +

(
ρ−

∑
k∈N

kρk

)
f cl
∞(β) +

1

β

∑
k∈N

ρk(log ρk − 1). (1.6)

This rate function describes the large deviations of the cluster size distribution in an idealised model that
neglects the excluded-volume effect: the first term describes the internal free energy coming from the clusters
of finite size, the second term the analogous contribution from clusters of infinite size, and the last term
describes the entropy of placing all these clusters into the volume, not taking care of being separated from
each other. See Section 1.5 for an integer partition model that has f ideal(β, ρ, ·) as a rate function.

We are going to compare f(β, ρ, ρ) with f ideal(β, ρ, ρ) for small densities ρ and low temperatures 1/β.
That these two should be close to each other is intuitively clear, since low temperature should ensure that
clusters assume a compact shape, and low density should give enough space to place the clusters at positive
mutual distance. The main purpose of this paper is to make this reasoning rigorous.

1.3 Our hypotheses

We need further assumptions about ground states and the cluster partition functions. Roughly speaking, we
need to assume some Hölder continuity of the energy Uk(·) close to the ground states and that the relevant
clusters at zero and low temperature, respectively, have a compact shape, i.e., occupy at most a box with
volume of order of the number of particles. These hypotheses are believed to be true for many potentials of
the type in Assumption (V), and they can be seen to be satisfied for the ground states. However, for positive
temperatures, their rigorous understanding has not yet been completed.

The purpose of the hypothesis of bounded density is the following. As we indicated above, the fundamental
idea is to split the configuration into its clusters and to collect the internal free energies of all the clusters.
However, one also needs to describe the entropy of a configuration, that is, the combinatorial complexity for
the placement of all the clusters into some cube. This task is very hard without further information. In the low-
density approximation, we will solve this task by neglecting the excluded-volume effect, which makes it much
easier. For this, we need to know that the clusters do not require a large diameter. Our second hypothesis
ensure this for the ground states, and the last two hypotheses ensure this for positive low temperature.
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First we formulate our hypothesis about uniform Hölder continuity of the energy around the ground states
and a strong form of stability. Recall that the pair potential v is called stable if 1

k
infx∈(Rd)k Uk(x) is bounded

from below in k, which means that the ground states do not clump too strongly.

Hypothesis 1. There is a rmin ∈ (rhc,∞) such that v is uniformly Hölder continuous in [rmin,∞) and, for
all k ∈ N, every minimiser (x1, . . . , xk) ∈ (Rd)k of the energy Uk has interparticle distance lower bounded
as |xi − xj| ≥ rmin for any i 6= j.

This hypothesis can be seen to be satisfied under some mild additional assumptions on v relating the
negative part of v to its behaviour at zero; see [CKMS10, Proof of Lemma 3.1] or [Th06, Lemma 2.2]. The
Hölder continuity allows us to give low-temperature estimates of the form

− 1

βk
log

1

k!

∫
(Rd)k

e−βU(x) dx =
1

k
inf

x∈(Rd)k
U(x) + O

( log β

β

)
as β →∞,

uniformly in k ∈ N.

Our next hypothesis says that the minimising configurations (the ground states) do not occupy more space
than a box with volume of order of the number of particles.

Hypothesis 2 (Ground states have a compact shape). There is a constant c > 0 such that for all k ∈
N every minimiser (x1, . . . , xk) ∈ (Rd)k of the energy Uk has interparticle distance upper bounded by
|xi − xj| ≤ ck1/d for any i 6= j.

This hypothesis is known to be satisfied for some classes of potentials having a large intersection with
those satisfying Assumption (V), however, only in dimension one and two. See [R81] and [YFS11].

Now we proceed with two more restrictive hypotheses, whose validity has actually not been clarified for
all interesting potentials of the type that we consider. They concern, at positive sufficiently low temperature,
the diameter of the relevant clusters.

An important object is the internal cluster energy coming from a box of volume ad:

Zcl,a
k (β) :=

1

k!ad

∫
([0,a]d)k

e−βUk(x)1l{x connected} dx1 · · · dxk. (1.7)

The reader may check that lima→∞ Zcl,a
k (β) = Zcl

k (β) holds for every fixed k and β. The corresponding
free energy is defined as f cl,a

k (β) := − 1
βk

log Zcl,a
k (β). It is tempting to believe (and this is the content of

our next hypothesis) that, at least at sufficiently low temperature, a box of volume of order k should capture
almost all the internal free energy of a cluster:

Hypothesis 3 (Clusters have compact shape). For some c ∈ (0,∞) and every sufficiently large β,

lim
k→∞

1

k
log Zcl,ck1/d

k (β) = lim
k→∞

1

k
log Zcl

k (β). (1.8)

However, this hypothesis has not even been proved for the relatively simple case of the two-dimensional
Ising model, see the discussion in [DS86]. It is commonly believed that (1.8) is true for low temperature
and wrong for high temperature, since the cluster is believed to assume a tree-like structure and to occupy
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therefore a much larger portion of space. This phenomenon is often called a collapse transition: as the
temperature decreases below a critical value, the volume per particle collapses to some finite value.

The following hypothesis is in the spirit of Hypothesis 3 and goes much beyond it: if, for large β, the
relevant configurations for f cl

k (β) have a compact shape, then the number of particles that have not the
optimal number of neighbours should be of surface order. Therefore the correction to the large-k asymptotics
should be of surface order of a ball with volume ≈ k:

Hypothesis 4. For some C > 0 and all sufficiently large β,

kf cl
k (β)− kf cl

∞(β) ≥ Ck1−1/d, k ∈ N. (1.9)

To the best of our knowledge, such a deep statement has not been proved for any interesting potential
satisfying Assumption (V). Actually for our proofs we only need a lower bound against Ckε for some ε > 0

instead of Ck1−1/d.

1.4 Our results

Our first main result applies to all cluster size distributions ρ, not only minimisers of the rate functions, and
is therefore possibly of interest for non-equilibrium thermodynamic models.

Theorem 1.1 (Comparison of f(β, ρ, ·) and f ideal(β, ρ, ·)). Let the pair potential v satisfy Hypotheses 1
and 2. Then there are ρ, β and C > 0 such that for all β ∈ [β,∞), ρ ∈ (0, ρ), and K ∈ N with
K < (ρ/3)−1/(d+1), and all ρ = (ρk)k∈N ∈ [0,∞)N satisfying

∑
k∈N kρk ≤ ρ,

f ideal(β, ρ, ρ) ≤ f(β, ρ, ρ) ≤ f ideal(β, ρ, ρ) +
C

β
εK(β, ρ, ρ), (1.10)

where
εK(β, ρ, ρ) = ρ

(d+2)/(d+1)
≤K + (ρ− ρ≤K) log β −m>K log m>K (1.11)

and we abbreviated ρ≤K :=
∑K

k=1 kρk and m>K :=
∑∞

k=K+1 ρk. If in addition Hypothesis 3 holds, then
in (1.11) we can replace (ρ− ρ≤K) with

∑∞
k=K+1 kρk.

Theorem 1.1 is proved in Section 2. Next, we compare the minimimum and the minimisers under the two
stronger hypotheses on the compact shape of the relevant clusters at positive temperature and the finite size
correction of the cluster free energy. Let

f ideal(β, ρ) := inf
{

f ideal(β, ρ, ρ)
∣∣∣ρ ∈ [0,∞)N,

∑
k∈N

kρk ≤ ρ
}

. (1.12)

It is not difficult to see that there is a unique minimiser ρideal(β, ρ) = (ρideal
k (β, ρ))k∈N. We set

mideal(β, ρ) :=
∑∞

k=1 ρideal
k (β, ρ) ∈ [0, ρ].

Theorem 1.2. Suppose that Hypotheses 1, 3 and 4 hold, and assume that d ≥ 2. Then there are
β, ρ, C, C ′ > 0 such that, for all β ∈ [β,∞) and ρ ∈ (0, ρ), the following holds.
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1 Free energy:

0 ≤ f(β, ρ)− f ideal(β, ρ) ≤ C

β
mideal(β, ρ)ρ1/(d+1). (1.13)

2 Let ρ = ρ(β,ρ) = (ρk)k∈N be a minimiser of f(β, ρ, ·), and put m :=
∑

k∈N ρk. Then∣∣∣∣ m

mideal(β, ρ)
− 1

∣∣∣∣2 ≤ C ′ρ1/(d+1) and
1

2
H
( ρ

m
;
ρideal(β, ρ)

mideal(β, ρ)

)
≤ C ′ρ1/(d+1). (1.14)

Here
H(a; b) =

∑
k∈N

(
bk − ak + ak log

ak

bk

)
is the relative entropy between two finite measures a and b on N, and we recall Pinsker’s inequality: when a

and b are probability measures, then 1
2
H(a; b) ≥ ||a− b||2var. The proof of Theorem 1.2 is in Section 3.2.

If we do not assume that Hypotheses 3 and 4 are true, our rigorous bounds hold in the temperature-
density plane only in a region away from the critical line given by ρ = exp(−βν∗) with ν∗ ∈ (0,∞) defined
as follows. Introduce the ground-state energy,

Ek := inf
x∈(Rd)k

Uk(x). (1.15)

Then e∞ := limk→∞ Ek/k exists in (−∞, 0), and ν∗ := infk∈N(Ek−ke∞) is positive [CKMS10, JKM11].

Theorem 1.3. Let v satisfy Hypotheses 1 and 2. Then, for any ε > 0 there are βε, Cε, C
′
ε > 0 such that

for all β ∈ [βε,∞) and ρ ∈ (0,∞) satisfying −β−1 log ρ > ν∗ + ε, (1.13) and (1.14) hold with C and C ′

replaced by Cε and C ′
ε, respectively.

The proof of Theorem 1.3 is in Section 3.3.

1.5 Discussion

Let us explain in more detail the significance of Theorems 1.2 and 1.3, and in which way they improve results
of [JKM11].

We start by recalling the properties of the idealised problem; see also [BCP86, Sect. 4]. As mentioned
above, for all β and ρ, f ideal(β, ρ, ·) has a unique minimiser (ρideal

k (β, ρ))k∈N, which can be characterised
as follows. Let

ρideal
sat (β) :=

∑
k∈N

k eβk[fcl
∞(β)−fcl

k (β)] ∈ (0,∞] (1.16)

be the saturation density of the ideal mixture. If Hypothesis 4 holds (actually also under much weaker bounds
than the one in (1.9)), at low temperature, ρideal

sat (β) is finite. In general, however, it can be infinite. For
ρ < ρideal

sat (β), let µideal(β, ρ) ∈ (−∞, f cl
∞(β)) be the unique solution of

∞∑
k=1

k eβk[µideal(β,ρ)−fcl
k (β)] = ρ, (1.17)
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and for ρ ≥ ρideal
sat (β), let µideal(β, ρ) := f cl

∞(β). Then, the minimiser (ρideal
k (β, ρ))k is given by

ρideal
k (β, ρ) = eβk[µideal(β,ρ)−fcl

k (β)], (1.18)

and the ideal free energy from (1.12) is given by

f ideal(β, ρ) = ρµideal(β, ρ)− 1

β
mideal(β, ρ). (1.19)

Moreover, ρ 7→ f ideal(β, ρ) is analytic and strictly convex in (0, ρideal
sat (β)), and linear with slope f cl

∞(β) in
[ρideal

sat (β),∞). In particular, the ideal mixture undergoes a phase transition as the density is varied if and only
if the saturation density of the ideal mixture is finite. The transition is from a gas phase where all particles are
in finite-size clusters, to a condensed phase where a positive fraction goes into unboundedly large clusters:
for all ρ < ρideal

sat (β, ρ), we have
∑∞

k=1 kρideal
k (β, ρ) = ρ, while for ρ > ρideal

sat (β),
∑∞

k=1 kρideal
k (β) =

ρideal
sat (β) < ρ.

Armed with this knowledge, we can compare our results with those of [JKM11]. In [JKM11], we approx-
imated the rate function f(β, ρ, ·), more precisely the function q = (qk)k∈N 7→ 1

ρ
f(β, ρ, (kqk)k∈N/ρ),

with

gν(q) =
(
1−

∞∑
k=1

qk

)
e∞ +

∞∑
k=1

qk
Ek − ν

k
, ν := − 1

β
log ρ. (1.20)

This function is easier to formulate, but involves more approximations, and has some rather unphysical
properties. This approximation was proved in the so-called Saha regime, where large β and small ρ are
coupled with each other via the equation ρ = e−βν for some parameter ν ∈ (0,∞), and the limiting
rate function gν turned out to be piecewise linear with at least one kink, but also possibly more. Each kink
represents a phase transition, and the minimiser in the kinks is not unique. This is in strong contrast with
the approximate rate function f ideal(β, ρ, ·) studied in this paper, which possesses only one minimiser and
only (at most) one phase transition. As we make explicit in the next paragraph, f ideal(β, ρ, ·) can itself be
approximated by gν , in particular by neglecting an entropy term. It is the smoothing effect of this term that
gets lost in that approximation, and possibly a lot of new kinks appear in this way. We know that these
additional kinks correspond to cross-overs inside the gas phase, but not to sharp phase transitions (see
[J11] for a discussion of this). Hence, the full ideal mixture captures the behaviour of the physical system
much better than the function studied in [JKM11].

We note that both f ideal(β, ρ, ·) and gν considered in [CKMS10, JKM11] appear as exact large devi-
ations rate functions for simple random partitions models. We consider vectors (Nk)1≤k≤N ∈ NN

0 with∑N
k=1 kNk = N as integer partitions, and look at the (not normalised) measures on partitions given by

µideal
β,N,Λ({(N1, . . . , NN)}) :=

N∏
k=1

(|Λ|Zcl
k (β))Nk

Nk!
=

(
M

N1, . . . , NN

)
× |Λ|M

M !

N∏
k=1

(Zcl
k (β))Nk ,

µCKMS
β,N,Λ({N1, . . . , NN}) :=

|Λ|M

M !

N∏
k=1

(e−βEk)Nk ,

(1.21)

where M :=
∑N

k=1 Nk. In the thermodynamic limit N, |Λ| → ∞ such that N/|Λ| → ρ, under
µideal

β,N,Λ, the vector (Nk/|Λ|)k∈N satisfies a large deviations principle with speed β|Λ| and rate function

7



f ideal(β, ρ, ·). On the other hand, under µCKMS
β,N,Λ , the vector (kNk/N)k∈N satisfies a large deviations prin-

ciple with speed βN and rate function q 7→ gν(q) − 1
β

∑
k∈N

qk

k
, which differs from the approximate

functional gν from [CKMS10, JKM11] only by a vanishing term. Hence, from (1.21) we see that gν(·) arises
from f ideal(β, ρ, ·) by two simplifications: Zcl

k (β) ≈ exp(−βEk) and the omission of the multinomial coef-
ficient, that is, the cluster free energy is approximated by the ground state energy, and the mixing entropy is
neglected.

The second main difference with [JKM11] is that our error bounds are much better. In [JKM11], the free
energy per particle f(β, ρ)/ρ is approximated up to errors of the order (log β)/β. In contrast, when ρ =

e−βν for fixed ν > 0, as β → ∞, the error in (1.13) vanishes exponentially fast in β. Moreover, (1.13) may
be written as

f(β, ρ) = ρµideal(β, ρ)− 1

β
mideal(β, ρ)

(
1 + O(ρ1/(d+1))

)
.

This is interesting because for ρ > ρideal
sat (β), we have mideal(β, ρ) ≤ ρideal

sat (β). Thus the free energy
equals the ideal free energy plus an error which is small compared to the smallest of the two terms in (1.19),
1
β
mideal.

For completeness and for the reader’s convenience, in Section A, we provide approximations of the ide-
alised mixture model in terms of gν in the Saha regime with exponentially small errors.

2 Proof of Theorem 1.1

In this section, we prove Theorem 1.1. We will use a convexity argument and split an arbitrary sequence ρ

into its components on the first K entries and the ones on the remainder. Hence, we consider these two
parts separately.

2.1 Case 1: all clusters have size ≤ K

Here we consider ρ satisfying ρk = 0 for k > K with some K ∈ N. Recall from Assumption (V) that b is
the interaction range and R ∈ (b,∞) determines the notion of connectedness.

Lemma 2.1. Let β > 0, k ∈ N. Set C := sup|x|≤2/3 |x−1 log(1− x)|. Then

(i) For all A > 0, f cl
k (β) ≤ f cl,A

k (β).

(ii) For all A > 3kR,

f cl,A
k (β) ≤ f cl

k (β) +
CdR

βA
.

Proof. (i) For all β, k, A, we have Zcl,A
k (β) ≤ Zcl

k (β), which implies that f cl,A
k (β) ≥ f cl

k (β).

(i) Let k ∈ N and a > 2kR. Let x1 ∈ [0, a]d have distance ≥ kR to the boundary of the cube. Then,
writing x = (x1, . . . , xk),

1

k!

∫
[0,ad]k−1

e−βUk(x)1l{x connected} dx2 · · · dxk =
1

k!

∫
(Rd)k−1

e−βUk(x)1l{x connected} dx2 · · · dxk

= Zcl
k (β).

8



Thus, integrating over x1 and recalling the definition of Zcl,A
k (β) in (1.7),

Zcl,A
k (β) ≥ (A− 2kR)d

Ad
Zcl

k (β).

Therefore, when A > 3kR, we take − 1
βk

log and deduce

f cl,A
k (β) ≤ f cl

k (β)− 1

βk
log
[
(1− 2kR

A
)d
]
≤ f cl

k (β) + CdR
βA

.

Lemma 2.2. Fix β, ρ > 0. Let K ∈ N and A > 0 such that (A + R)d < ρ−1. Then for all ρ such that∑K
k=1 kρk = ρ,

f(β, ρ, ρ) ≤
K∑

k=1

kρkf
cl,A
k (β) +

1

β

K∑
k=1

ρk(log ρk − 1)

+
1

β

(
K∑

k=1

ρk

)(
− log

(
1− (A + R)d

K∑
k=1

ρk

)
+ log

(
1 + R

A

)d
)

.

(2.22)

Proof. Let Λ = [0, L]d. For 2 ≤ k ≤ K , set Nk := b|Λ|ρkc. Set N1 := N −
∑K

k=2 kNk, and M :=∑K
k=1 Nk. Divide Λ into cubes of side-length A, at mutual distance R. We call these cubes “cells”. The

number D of cubes that can be placed in this way is D ≥ bL/(A + R)cd. Let

ZΛ(β, N, N1, . . . , NK) :=
1

N !

∫
ΛN

e−βUN (x)1l
{
∀k ∈ {1, . . . , K} : Nk(x) = Nk

}
dx.

We can lower bound this constrained partition function by integrating only over configurations such that:
(a) there is at most one cluster per cell, and (b) each cluster is contained in one of the cells. The number
of partitions of the particle label set {1, . . . , N} into N1 sets of size 1, N2 sets of size 2, etc., is equal
to N !/(

∏K
k=1 k!Nk!). For a given set partition, the number of ways to assign distinct cells to the sets is

D(D − 1) · · · (D −M + 1). Thus we find

ZΛ(β, N, N1, . . . , NK) ≥ D(D − 1) · · · (D −M + 1)
K∏

k=1

(
AdZcl,A

k (β)
)Nk

Nk!
.

We observe that

D(D − 1) · · · (D −M + 1)(Ad)M ≥
((

L
A+R

− 1
)d −M

)M

(Ad)M

= |Λ|M
( A

A + R

)dM((
1− A+R

L

)d − M(A+R)d

|Λ|

)M

.

It follows that in the limit N, L → ∞, N/Ld → ρ, − lim inf 1
β|Λ| log ZΛ(β, N, N1, . . . , NK) is not larger

than the right-hand side of (2.22). The proof of the lemma is then concluded as in the proof of [JKM11,
Proposition 3.2].
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Proposition 2.3. Fix β > 0, ρ ≤ (2d+1/3)1+1/d, and K ∈ N with K < ρ−1/(d+1). Then, for suitable
C ′ > 0 and all ρ with

∑K
k=1 kρk = ρ and ρk = 0 for k ≥ K + 1,

f(β, ρ, ρ) ≤ f ideal(β, ρ, ρ) + C ′ ρ

β
ρ1/(d+1).

Proof. Let C > 0 be as in Lemma 2.1 and set m :=
∑K

k=1 ρk. Then by Lemmas 2.1 and 2.2,

f(β, ρ, ρ)− f ideal(β, ρ, ρ) ≤ CdR

βA
ρ +

Cm

β

(
(A + R)dm +

dR

A

)
,

provided A > 3KR and (A + R)dm ≤ 2/3. Set A = ρ−1/(d+1)/(3R). Then A > 3KR because by
assumption K < ρ−1/(d+1), and (A + R)dm ≤ 2dAdρ = 2dρd/(d+1) ≤ 2/3 because we have assumed
ρ ≤ (2d+1/3)1+1/d. Thus we have

f(β, ρ, ρ)− f ideal(β, ρ, ρ) ≤ C ′ ρ

β
ρ1/(d+1), where C ′ := C

( 2d

(3R)d
+ 6dR2

)
.

2.2 Case 2: all clusters have size ≥ K + 1

Proposition 2.4. Suppose that v satisfies Hypotheses 1 and 2. Then there are ρ, β, C ′′ > 0 such that for
all β ∈ [β,∞), ρ ∈ (0, ρ), for all K ∈ N0 and all ρ such that

∑∞
k=K+1 kρk ≤ ρ and ρk = 0 for k ≤ K ,

f(β, ρ, ρ) ≤ f ideal(β, ρ, ρ) +
C ′′ρ

β
log β − m

β
log

m

ρ e
. (2.23)

If in addition Hypothesis 3 holds, we can replace ρβ−1 log β with (
∑∞

k=K+1 ρk)β
−1 log β.

Proof. By [JKM11, Theorem 1.8], there are ρ, β, C ′′ > 0 such that for all β ≥ β and ρ ≤ ρ ,

f(β, ρ, ρ) ≤
∞∑

k=K+1

ρk

(
Ek +

log ρ

β

)
+
(
ρ−

∞∑
k=K+1

kρk

)
e∞ +

C ′′ρ

β
log β. (2.24)

Because of [JKM11, Lemma 4.3], we can further increase C ′′ and β so that for all k ∈ N and β ≥ β,

Ek

k
≤ f cl

k (β) +
C ′′

β
log β and e∞ ≤ f cl

∞(β) +
C ′′

β
log β.

Moreover, setting m :=
∑∞

k=K+1 ρk,

∞∑
k=K+1

ρk
log ρ

β
− 1

β

∞∑
k=K+1

ρk(log ρk − 1) ≤ m

β

(
2 + log

ρ

m
+ log

∑∞
k=K+1 kρk

m

)
.

Here we have used that

−
∞∑

k=K+1

ρk log
ρk

m
≤ m

(
1 + log

∑∞
k=K+1 kρk

m

)
,

10



see [JKM11, Lemma 4.1]. The inequality (2.23) follows.

If in addition Hypothesis 3 holds we remark, first, that for all ρ ≤ 1/c and all sufficiently large β, with c as
in Hypothesis 3, f(β, ρ,0) ≤ f cl

∞(β) = f ideal(β, ρ,0). Because of the convexity of f(β, ρ, ·),

f(β, ρ, ρ) ≤
∑∞

k=1 kρk

ρ
f(β, ρ, ρ̃) +

ρ−
∑∞

k=K+1 kρk

ρ
f(β, ρ,0), ρ̃ :=

(∑∞
k=1 kρk

ρ

)−1

ρ.

We deduce that in (2.24) we can replace e∞ with f cl
∞(β), and the claim follows.

2.3 General case

Proof of Theorem 1.1. We already know that f(β, ρ, ρ) ≥ f ideal(β, ρ, ρ) [JKM11, Lemma 3.1], so we
need only prove the upper bound for f(β, ρ, ρ). Let K ∈ N and ρ such that

∑∞
k=1 kρk ≤ ρ. The cases∑k

k=1 ρk = ρ and = 0 were treated in Propositions 2.3 and 2.4, thus we may assume 0 <
∑K

k=1 kρk < ρ.
Set ρ≤K :=

∑K
k=1 kρk. Let ρ be as in Proposition 2.4 and suppose that ρ ≤ ρ. Set

ρ :=
ρ≤K

1− ρ≤K/ρ

and

ρsmall
k :=

{
ρk/(1− ρ≤K/ρ) if 1 ≤ k ≤ K,

0, if k ≥ K + 1,
and ρlarge

k :=

{
0 if 1 ≤ k ≤ K,

ρk/[ρ≤K/ρ], if k ≥ K + 1.

It was shown in [JKM11, Section 2.5] that the map (ρ, ρ) 7→ f(β, ρ, ρ) is a supremum of convex functions
and hence is itself convex. Thus we can write

f(β, ρ, ρ) ≤
(
1− ρ≤K

ρ

)
f
(
β, ρ, ρsmall

)
+

ρ≤K

ρ
f
(
β, ρ, ρlarge

)
. (2.25)

Propositions 2.3 and 2.4 yield

f(β, ρ, ρ)− f ideal(β, ρ, ρ) ≤ C ′ρ≤K

β

( K∑
k=1

ρsmall
k

)1/(d+1)

− m≤K

β
log
(
1− ρ≤K

ρ

)
+

C ′′

β
(ρ− ρ≤K) log β − 2

m>K

β
log

m>K

ρ e
,

provided β ≥ β, ρ ≤ (2d+1/3)1+1/d, and K < ρ−1/(d+1). The conditions on ρ and K are certainly satisfied
if we assume that ρ ≤ 2

3
min(1, ρ) and K ≤ (ρ/3)−1/(d+1). If this is the case, we can further bound the

right-hand side of (2.3) as

C ′31/(d+1) + C

β

(
ρ≤K

)(d+2)/(d+1)
+

C ′′

β
(ρ− ρ≤K) log β − 2

m>K

β
log

m>K

ρ e
.

Since m>K ≤ ρ ≤ 2/3 , we can upper bound |1 + log ρ| ≤ −D(ρ) log m>K for some suitable constant
C(ρ) > 0. We obtain the bound of Theorem 1.1. The improved bound under Hypothesis 3 is deduced from
the corresponding statement in Proposition 2.4.
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3 Proof of Theorems 1.2 and 1.3

We prove Theorems 1.2 and 1.3 in Sections 3.2 and 3.3 below, respectively, after providing some prepara-
tions in Section 3.1.

3.1 Tail estimates

The main idea for the proof of Theorems 1.2 and 1.3 is to apply Theorem 1.1 to the minimiser ρideal(β, ρ) of
the ideal rate function. Therefore we will need estimates on the tails of the ideal minimiser, see Lemmas 3.2
and 3.3 below. First we recall a statement about the low-temperature behaviour of the cluster free energy.
Recall the ground-state energy Ek defined in (1.15).

Lemma 3.1 (Cluster free energy at low temperature). There are β0 > 0 and C > 0 such that for β ≥ β0,

∀k ∈ N : f cl
k (β) ≥ Ek

k
− C

β
, and f cl

∞(β) ≥ e∞ − C

β
.

Moreover, for each fixed k ∈ N, limβ→∞ f cl
k (β) = Ek/k. If in addition the pair potential satisfies Hypothe-

sis 1, then for β ≥ β0,

∀k ∈ N : f cl
k (β) ≤ Ek

k
+

C

β
log β, and f cl

∞(β) ≤ e∞ +
C

β
log β.

and limβ→∞ f cl
∞(β) = e∞.

Proof. The limit statement for f cl
k (β) as β → ∞ follows by a standard argument for exponential integrals.

The lower bounds for f cl
k (β) and f cl

∞(β) have been proven in [JKM11, Lemma 4.3]. The upper bounds follow
from [JKM11, Lemma 4.5] and the observation that for all β, a > 0 and k ∈ N, f cl

k (β) ≤ f cl,a
k (β), see

Lemma 2.1.

In the following, we omit the arguments (β, ρ) of the objects ρideal and mideal for brevity. Recall that ρideal

is given in (1.18) and that mideal =
∑

k∈N ρideal
k and mideal

>K =
∑∞

k=K+1 ρideal
k .

Lemma 3.2. Suppose that Hypothesis 4 is true, and assume that d ≥ 2. Then there are C, c, β > 0,
K0 ∈ N such that for all K ≥ K0, β ∈ [β,∞), and ρ > 0,∑

k∈N kρideal
k∑

k∈N ρideal
k

≤ C, and
mideal

>K

mideal
≤
∑∞

k=K+1 kρideal
k

mideal
≤ e−βcK1−1/d

. (3.26)

Proof. According to Hypothesis 4, we can choose c > 0, K0 ∈ N, and β such that for β ≥ β and K ≥ K0,

∞∑
k=K+1

k exp(βk[f cl
∞(β)− f cl

k (β)]) ≤ e−βcK1−1/d

.

Let k(ν∗) be such that Ek(ν∗) − k(ν∗)e∞ = ν∗. Recall from (1.18) that ρideal
k (β, ρ) ≤ exp(βk[f cl

∞(β) −
f cl

k (β)]). Then, for K ≥ max{K0, k(ν∗)}, we have, also using Lemma 3.1,∑∞
k=K+1 kρideal

k∑∞
k=1 ρideal

k

≤ e−βcK1−1/d

ρideal
k(ν∗)

=
e−βcK1−1/d

e−β(ν∗+O(β−1 log β))
≤ e−β(cK1−1/d−2ν∗),

12



where the last inequality holds for sufficiently large β. For K sufficiently large, this last expression is smaller
than e−βcK1−1/d/2. Writing c/2 instead of c, this shows the second assertion in (3.26). Furthermore, for these
K , ∑

k∈N kρideal
k

mideal
≤
∑K

k=1 kρideal
k∑K

k=1 ρideal
k

+ e−βcK1−1/d/2 ≤ K + 1.

Using this for K = K0, this also shows the first assertion in (3.26).

If we do not assume that Hypothesis 4 is true, we have an analogue of Lemma 3.2 for densities much
smaller than exp(−βν∗), valid for all d ∈ N.

Lemma 3.3. Let v satisfy Hypothesis 1. Fix ε > 0. Then there are βε, Kε, δε > 0 such that for all β ∈
[βε,∞), ρ ≤ exp(−β(ν∗ + ε)) and K ≥ Kε,

ρ

mideal
≤ Cε, and

mideal
>K

mideal
≤
∑∞

k=K+1 kρideal
k

mideal
≤ e−βKδε .

For the proof, we give first a lower bound for the saturation density of the ideal mixture, which is of interest
in itself. Under additional hypotheses, a stronger statement holds, see Prop. A.1.

Lemma 3.4.

lim inf
β→∞

1

β
log ρideal

sat (β) ≥ −ν∗.

Proof. Let k ∈ N. We pick, as a lower bound, only the k-th summand in (1.16). Then, as β →∞, according
to Lemma 3.1,

1

β
log ρideal

sat (β) ≥ 1

β
log k + k(f cl

∞(β)− f cl
k (β)) = −(Ek − ke∞) + o(1).

Letting β →∞ and taking the supremum over k of the right-hand side yields the desired result.

Proof of Lemma 3.3. Fix ε > 0. By Lemma 3.4, there is a β0 > 0 such that for all β ≥ β0, e−β(ν∗+ε) <

ρideal
sat (β). Thus for β ≥ β0 and ρ ≤ e−β(ν∗+ε), we have ρ < ρideal

sat (β, ρ), and µideal(β, ρ) solves (1.17).

Let µε := infk∈N(Ek − ν∗ − ε)/k. Then µε < e∞. Indeed, by definition of ν∗, there is a k ∈ N such
that Ek − ke∞ ≤ ν∗ + ε/2, and for this k, µε ≤ (Ek − ν∗ − ε)/k ≤ e∞ − ε/(2k) < e∞. Choosing
k0 ∈ N such that µε = (Ek0 − ν∗ − ε)/k0, we find

µideal(β, ρ) ≤ f cl
k0

(β) +
β−1 log ρ

k0

≤ Ek0 − (ν∗ + ε)

k0

+ O(β−1 log β) = µε + O(β−1 log β).

Since µε < e∞ and [Ek − (ν∗ + ε)]/k → e∞ as k →∞, there are kε ∈ N, ∆ε > 0 such that

k ≥ kε =⇒ Ek − (ν∗ + ε)

k
≥ µ(ν∗ + ε) + ∆ε.

It follows that for k ≥ kε,

ρideal
k (β, ρ)

ρ
≤ exp(−βk(∆ε + O(β−1 log β))).

13



Choose βε ≥ β0 large enough so that the O(β−1 log β) term is ≤ ∆ε/2, then we find for β ≥ βε and
k ≥ kε,

ρideal
k (β, ρ)

ρ
≤ exp(−βk∆ε/2).

Noting that for z < 1, as K →∞,
∑

k≥K kzk = O(zK), we deduce that for sufficiently large K ,∑∞
k=K+1 kρideal

k (β, ρ)

ρ
≤ exp(−βKδε).

Now fix K1 ≥ Kε large enough so that exp(−βεδεK1) ≤ 1/2. Then

ρ =

K1∑
k=1

kρideal
k +

∞∑
k=K1+1

kρideal
k (β, ρ) ≤ K1m

ideal + ρ/2

whence ρ ≤ 2K1m
ideal and, for sufficiently large K ,∑∞

k=K+1 kρideal
k

mideal
≤ 2K1 exp(−βKδε).

3.2 Proof of Theorem 1.2

3.2.1 Free energy f(β, ρ)

By Theorem 1.1, for all β and ρ,

f(β, ρ) = inf
ρ

f(β, ρ, ρ) ≥ inf
ρ

f ideal(β, ρ, ρ) = f ideal(β, ρ).

Thus we need only prove the upper bound to f(β, ρ). To this aim we note that

f(β, ρ) ≤ f(β, ρ, ρideal(β, ρ)) = f ideal(β, ρ) +
(
f(β, ρ, ρideal(β, ρ))− f ideal(β, ρ, ρideal(β, ρ))

)
.

where we recall that ρideal(β, ρ) is the unique minimiser of f ideal(β, ρ, ·). To lighten notation, we will drop
the (β, ρ)-dependence in the notation and write ρideal, mideal, instead of ρideal(β, ρ), mideal(β, ρ), etc.
Theorem 1.1 yields

f(β, ρ, ρideal)− f ideal(β, ρ, ρideal) ≤ C

β

(
(ρideal
≤K )(d+2)/(d+1) +

∞∑
k=K+1

kρideal
k log β −mideal

>K log mideal
>K

)
,

provided β ≥ β, ρ < ρ, and K < (ρ/3)−1/(d+1). By Lemma 3.2, if we assume β ≥ β0 and K ≥ K0, the
term in the big parenthesis is bounded above by a constant times

mideal
(
ρ1/(d+1) + e−βcK1−1/d

log β + βcK1−1/de−βcK1−1/d
)
.

Choosing K as a constant times ρ−1/(d+1), we see that the second and third summands are bounded by
the first. This gives the desired bound on the free energy.
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3.2.2 Minimisers

Every minimiser ρ of f(β, ρ, ·) satisfies f(β, ρ) = f(β, ρ, ρ) ≥ f ideal(β, ρ, ρ). Therefore, according to
part (1),

0 ≤ f ideal(β, ρ, ρ)− f ideal(β, ρ) ≤ f(β, ρ)− f ideal(β, ρ) ≤ C

β
midealρ1/(d+1).

Now by an explicit computation,

βf ideal(β, ρ, ρ)− βf ideal(β, ρ) = H(ρ; ρideal) + ρ∞(f cl
∞(β)− µideal),

where ρ∞ := ρ−
∑∞

k=1 kρk. Let pk := ρk/m and pideal
k := ρideal

k /mideal. Then

H(ρ; ρideal) = midealg
(

m
mideal

)
+ mH(p; pideal),

where g(x) := 1− x + x log x. Note that g(x) ≥ 0 for all x > 0. Summarizing the last three displays, we
find,

midealg
(

m
mideal

)
+ mH(p; pideal) + ρ∞(f cl

∞(β)− µideal) ≤ Cmidealρ1/(d+1).

Since each of the three terms on the left-hand side is nonnegative, we obtain that each of them is not larger
than the right-hand side, and this implies

g
(

m
mideal

)
≤ Cρ1/(d+1) and H(p; pideal) ≤ C mideal

m
ρ1/(d+1).

Since g(x) → 0 implies x → 1 and g(x) ∼ (1− x)2/2 as x → 1, we deduce that for ρ sufficiently small
and some suitable constant C ′ > 0, |1 −m/mideal| ≤ C ′ρ1/(2d+2), and the corresponding bound for the
relative entropy easily follows.

3.3 Proof of Theorem 1.3

The argument is exactly the same as for Theorem 1.2. In Theorem 1.1 applied to ρideal, we note that for
ρ ≤ ρideal

sat , we have
∑∞

1 kρideal
k = ρ; this observation replaces the use of Hypothesis 3. Later we use

Lemma 3.3 instead of Lemma 3.2.

A The idealised model in the Saha regime

In this section, we provide explicit bounds for the approximation of the minima and the minimisers of the
idealised rate function f ideal by the ones of the function gν that we introduced in (1.20) and analysed in
[CKMS10] and [JKM11]. We work in the Saha regime, where ρ = e−βν for some ν ∈ (0,∞). Recall
that the interaction potential v is always supposed to satisfy Assumption (V). Let us first recall the relevant
notation.

The ground state energy Ek was defined in (1.15) and the quantities e∞ = limk→∞ Ek/k and ν∗ =

infk∈N(Ek − ke∞) were defined after (1.15). Set µ(ν) := infk∈N[Ek − ν]/k. From [JKM11, Lemma 1.3]
we know that the map ν 7→ µ(ν) is piecewise affine. It is constant with value µ(ν) = e∞ for ν ∈ (0, ν∗],
and strictly decreasing in [ν∗,∞). The set N ⊂ [ν∗,∞) of points at which µ changes its slope is bounded
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and either infinite, with the unique accumulation point ν∗, or finite. Furthermore, for ν ∈ (ν∗,∞) \ N , we
have µ(ν) = [Ekν − ν]/kν for a unique kν ∈ N, and

∆(ν) := inf
{Ek − ν

k
− µ(ν)

∣∣∣ k ∈ N, k 6= kν

}
(A.27)

is strictly positive [JKM11, Theorem 1.8].

A first quick consistency check concerns the comparison of the critical line ρ = exp(−βν∗)

from [CKMS10, JKM11] with the saturation density of the ideal mixture; this strengthens Lemma 3.4.

Proposition A.1 (Saturation density). Suppose that v satisfies Hypotheses 1, 2 and 4 and d ≥ 2. Then, as
β →∞, ρideal

sat (β) = exp(−βν∗ + O(log β)).

Next, we investigate the low-temperature asymptotics of f ideal(β, ρ). Recall that the free energy is a sum
of two terms, see (1.19). We analyse them separately and shall see that the dominant contribution comes
from the term ρµideal(β, ρ), which behaves like ρµ(ν). Observe that ρµ(ν) is precisely the approximation
to the free energy f(β, ρ) proven in [JKM11].

Proposition A.2 (Chemical potential). Suppose that v satisfies Hypotheses 1 and 2. Let ν > 0 and put
ρ = exp(−βν). Then, as β →∞,

� if ν ∈ (ν∗,∞) \ N ,

µideal(β, ρ) = f cl
kν

(β)− ν

kν

− log kν

β
+ O(β−1e−β∆(ν)/2) = µ(ν) + O

( log β

β

)
, (A.28)

� if ν < ν∗ and v also satisfies Hypothesis 4, and d ≥ 2, then

µideal(β, ρ) = f cl
∞(β) = e∞ + O

( log β

β

)
= µ(ν) + O

( log β

β

)
. (A.29)

Next we state the behaviour of mideal(β, ρ) =
∑

k∈N ρideal
k (β, ρ), the number of clusters per unit

volume. Note that for an ideal mixture, this is essentially the same as the pressure, βpideal(β, ρ) =

mideal(β, ρ) [H56].

Proposition A.3 (Number of clusters (pressure)). Suppose that v satisfies Hypotheses 1 and 2. Fix ν > 0

and put ρ = exp(−βν). Then, as β →∞,

� if ν ∈ (ν∗,∞) \ N , mideal(β, ρ) =
(
1 + O(e−β∆(ν)/2)

)
ρ/kν ,

� if ν < ν∗ and in addition v satisfies Hypothesis 4, and d ≥ 2, then mideal(β, ρ) = exp(−βν∗ +

O(log β)) = o(ρ).

Finally, we analyse the behaviour of the minimiser of f ideal(β, ρ, ·).

Proposition A.4 (Cluster size distribution). Suppose that v satisfies Hypotheses 1 and 2. Fix ν > 0 and
put ρ = exp(−βν). Then, as β →∞,
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� if ν ∈ (ν∗,∞) \ N ,
kνρ

ideal
kν

(β, ρ)

ρ
= 1 + O(e−β∆(ν)/2), (A.30)

� if ν < ν∗ and in addition v satisfies Hypothesis 4, and d ≥ 2,

∞∑
k=1

kρideal
k (β, ρ)

ρ
= O(e−β(ν∗−ν)+O(log β))). (A.31)

The interpretation of (A.30) is that all but an exponentially small fraction of particles are in clusters of size
kν , while the one of (A.31) is that the fraction of particle in finite-size clusters goes to 0 exponentially fast.

Proof of Proposition A.1. Because of Lemma 3.2, for suitable c > 0 and all sufficiently large K ∈ N and
sufficiently large β,

K∑
k=1

kZcl
k (β)eβkfcl

∞(β) ≤ ρideal
sat (β) ≤

K∑
k=1

kZcl
k (β)eβkfcl

∞(β) + ρideal
sat (β)e−βcK1−1/d

,

whence we see that

ρideal
sat (β) =

(
1 + O(e−βcK1−1/d

)
) K∑

k=1

kZcl
k (β)eβkfcl

∞(β).

The proof is concluded by choosing K large enough so that every minimiser of Ek − ke∞ is smaller or
equal to K , since for such a K , the sum on the right-hand side of the previous equation is exp(−βν∗ +

O(log β)).

Proof of Proposition A.2. Consider first the case ν ∈ (ν∗,∞) \ N . Hence, µ(ν) = (Ekν − ν)/kν for a
unique kν ∈ N and (Ek − ν)/k − µ(ν) ≥ ∆(ν) > 0 for all k 6= kν . For sufficiently large β, we will have
ρ < ρideal

sat (β) and therefore the chemical potential is strictly smaller than f cl
∞(β) and is given by the unique

solution of equation (1.17) which we rewrite as

1 =
∞∑

k=1

k zk exp

(
−βk

[
f cl

k (β)− ν

k
− f cl

kν
(β) +

ν

kν

])
(A.32)

with the auxiliary variable

z = z(β, ρ, ν) := exp(βµideal(β, ρ)) exp
(
−β
[
f cl

kν
(β)− ν

kν

])
. (A.33)

We bound the sum in equation (A.32) from below by the summand for k = kν . This gives 1 ≥ kνz
kν and

thus z ≤ 1. Next, we choose β0 such that for all β ≥ β0 and all k 6= kν , the term in square brackets
in (A.32) is larger than β∆(ν)/2. Then

1 ≤ kνz
kν +

∑
k 6=kν

ke−βk∆(ν)/2 ≤ kνz
kν +

exp(−β∆(ν)/2)

(1− exp(−β∆(ν)/2))2
.

Thus we get kνz
kν = 1 + O(exp(−β∆(ν)/2)) and (A.28) follows from (A.33).

Now let us come to the case ν < ν∗. Because of Proposition A.1, for sufficiently large β, we will have
ρ > ρideal

sat (β) and hence by definition µideal(β, ρ) = f cl
∞(β). Equation A.29 is then a consequence of

Lemma 3.1.
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Proof of Proposition A.3. First we consider the case ν ∈ (ν∗,∞) \N . With z = z(β, ρ, ν) from (A.33), by
an argument similar to the proof of Proposition A.2, mideal(β, ρ)/ρ = zkν + O(exp(−β∆(ν)). Since we
saw that kνz

kν = 1 + O(exp(−β∆(ν))), we are done.

For the case ν < ν∗, we note that for sufficiently large β, ρ > ρideal
sat (β), hence mideal(β, ρ) =∑∞

k=1 Zcl
k (β) exp(−βkf cl

k (β)) and the claim follows by an argument similar to the proof of Prop. A.1.

Proof of Proposition A.4. The case ν ∈ (ν∗,∞) \ N is a consequence of the identity kνρ
ideal
kν

(β, ρ)/ρ =

kνz
kν and the argument in the proof of Proposition A.2.

In the case ν < ν∗ we just remark that for sufficiently large β, ρ > ρideal
sat (β) hence

∞∑
k=1

kρideal
k (β, ρ)

ρ
=

ρideal
sat (β)

ρ

and the proof is concluded by applying Proposition A.1.

Acknowledgements We gratefully acknowledge financial support by the DFG-Forschergruppe FOR718
“Analysis and stochastics in complex physical systems”.

References

[BCP86] J.M. BALL, J. CARR and O. PENROSE, The Becker-Döring cluster equations: basic properties
and asymptotic behaviour of solutions, Commun. Math. Phys. 104, 657-692 (1986).

[CKMS10] A. COLLEVECCHIO, W. KÖNIG, P. MÖRTERS and N. SIDOROVA, Phase transitions for dilute
particle systems with Lennard-Jones potential, Commun. Math. Phys. 299, 603-630 (2010).

[DS84] R. DICKMAN and W.C. SCHIEVE, Proof of the existence of the cluster free energy, J. Stat. Phys.
36, 435-446 (1984).

[DS86] R. DICKMAN and W.C. SCHIEVE, Collapse transition and asymptotic scaling behavior of lattice
animals: Low-temperature expansion, J. Stat. Phys. 44, 465-489 (1986).

[GHM01] H.-O. GEORGII, O. HÄGGSTRÖM and C. MAES, The random geometry of equilibrium phases,
Phase transitions and critical phenomena, Vol. 18, Academic Press, San Diego, CA, 2001, pp. 1–
142.

[H56] T.L. HILL, Statistical Mechanics: Principles and Selected Applications, McGraw-Hill Book Co.,
Inc., New York (1956)

[J11] S. JANSEN, Mayer and virial series at low temperature, arXiv:1109.6568v1 [math-ph], preprint
(2011).

18



[JKM11] S. JANSEN, W. KÖNIG and B. METZGER, Large deviations for cluster size distributions in a
continuous classical many-body system, preprint (2011).

[LP77] J.L. LEBOWITZ and O. PENROSE, Cluster and percolation inequalities for lattice systems with
interactions, J. Stat. Phys. 16, 321-337 (1977).

[M75] M.G. MÜRMANN, Equilibrium properties of physical clusters, Commun. Math. Phys. 45, 233-246
(1975).

[R81] C. RADIN, The ground state for soft disks, J. Stat. Phys. 26 (1981), 365-373.

[Th06] F. THEIL, A proof of crystallization in two dimensions, Commun. Math. Phys. 262, 209–236
(2006).

[YFS11] Y.A. YEUNG, G. FRIESECKE and B. SCHMIDT, Minimizing atomic configurations of short range
pair potentials in two dimensions: crystallization in the Wulff shape, Calc. Var. Partial Differential
Equations, DOI 10.1007/s00526-011-0427-6, published online (2011).

19


	Introduction and main results
	Proof of Theorem 1.1
	Proof of Theorems 1.2 and 1.3
	The idealised model in the Saha regime

