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Abstract

Existence and uniqueness are investigated for a nonlinear diffusion problem of phase-
field type, consisting of a parabolic system of two partial differential equations, comple-
mented by Neumann homogeneous boundary conditions and initial conditions. This sys-
tem aims to model two-species phase segregation on an atomic lattice [19]; in the balance
equations of microforces and microenergy, the two unknowns are the order parameter ρ
and the chemical potential µ. A simpler version of the same system has recently been dis-
cussed in [8]. In this paper, a fairly more general phase-field equation for ρ is coupled with
a genuinely nonlinear diffusion equation for µ. The existence of a global-in-time solution
is proved with the help of suitable a priori estimates. In the case of costant atom mobility,
a new and rather unusual uniqueness proof is given, based on a suitable combination of
variables.

1 Introduction

In this paper, the last so far in a series [6, 7, 8, 9, 10, 11], we further our mathematical analysis of
a mechanical model proposed by one of us [19] for phase segregation through atom rearrange-
ment on a lattice. On postponing a detailed presentation of the model and its antecedents until
next section, we begin by pointing out what features of the system we study are more general,
and therefore more difficult to handle mathematically, than in our previous paper [8].

The initial and boundary value problem we here tackle consists in looking for two fields, the
chemical potential µ > 0 and the order parameter ρ ∈ (0, 1), solving

2h(ρ) ∂tµ+ µh′(ρ) ∂tρ− div
(
κ(µ)∇µ

)
= 0 in Ω× (0, T ), (1.1)

δ∂tρ−∆ρ+ f ′(ρ) = µh′(ρ), in Ω× (0, T ), (1.2)

(κ(µ)∇µ) · ν|Γ = ∂νρ|Γ = 0 on Γ× (0, T ), (1.3)

µ( · , 0) = µ0 and ρ( · , 0) = ρ0 in Ω, (1.4)

where Ω denotes a bounded domain of R3 with conveniently smooth boundary Γ, T > 0, and
∂ν denotes differentiation in the direction of the outward normal ν. In (1.1), the atom mobility
is specified by a nonnegative, continuous and bounded, nonlinear function κ of µ (in particular,
the degeneracy of κ around the critical value µ = 0 is admitted). The problem is parameterized
by two scalar-valued functions, h and f , and two positive numbers, ε and δ, both intended to
be small. The parameter functions enter into the definition of the system’s free energy

ψ = ψ̂(ρ,∇ρ, µ) = −µh(ρ) + f(ρ) +
1

2
|∇ρ|2, (1.5)
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where the last two terms favor phase segregation, the former because it introduces local energy
minima and the latter because it penalizes spatial changes of the order parameter (we have set
equal to 1 the relative material constant). For h, one can take any smooth function provided it is
bounded from below by a positive constant:

h(ρ) ≥ ε

2
; (1.6)

for f , the sum
f(ρ) = f1(ρ) + f2(ρ)

of a convex and lower semicontinuous function f1, with proper domain D(f1) ⊆ R, and of
a smooth function f2 with no convexity properties, so as to allow for a double or multi-well
potential f . Note that f1 need not be differentiable in its domain, so that its possibly multivalued
subdifferential β := ∂f1 may appear in (1.2) in place of f ′1; in general, β is only a graph, not
necessarily a function, and it may include vertical (and horizontal) lines, as for example when

f1(ρ) = I[0,1](ρ) =

{
0 if 0 ≤ ρ ≤ 1

+∞ elsewhere
(1.7)

and β = ∂I[0,1] is specified by

ξ ∈ β(ρ) if and only if ξ


≤ 0 if ρ = 0

= 0 if 0 < ρ < 1

≥ 0 if ρ = 1

. (1.8)

The simpler situation dealt with in [8] obtains for κ constant-valued (and hence set equal to 1,
without any loss of generality),

h(ρ) = ρ, (1.9)

and f a double-well potential defined in (0, 1), whose derivative f ′ is singular at the endpoints
ρ = 0 and ρ = 1: e.g.,

f(ρ) = α1 {ρ ln(ρ) + (1− ρ) ln(1− ρ)}+ α2 ρ (1− ρ) (1.10)

for some positive constants α1 and α2.1 Under these less general circumstances, system (1.1)–
(1.4) reduces to

ε ∂tµ+ 2ρ ∂tµ+ µ ∂tρ−∆µ = 0 in Ω× (0, T ), (1.11)

δ ∂tρ−∆ρ+ f ′(ρ) = µ in Ω× (0, T ), (1.12)

∂νµ = ∂νρ = 0 on Γ× (0, T ), (1.13)

µ( · , 0) = µ0 and ρ( · , 0) = ρ0 in Ω. (1.14)

Note that h might attain its lower bound for some significant values of ρ, that is, for some ρ’s
lying in the domain of f1: actually, this was the case for h defined as in (1.9) over the interval

1Note that, according to whether or not α1 ≥ 2α2, it turns out that f is convex in the whole of [0, 1] or it exhibits
two wells with a local maximum at ρ = 1/2.
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[0, 1], that is, over the effective domain of both potentials in (1.10) and (1.7). We were prompted
to generalize (1.9) as in (1.6) by an interesting remark of Alexander Mielke, when one of us was
lecturing on our results, namely, that the behavior of

h(ρ) = ρ+ small parameter

is different in a right neighbourhood of 0 (h(ρ) ≈ 0) than in a left neightbourhood of 1 (h(ρ) ≈
1), whereas assuming only that h be bounded from below allows for many other instances like,
e.g., a specular behavior of h around the extremal points of the domain of f .

Returning now to (1.1)–(1.4), we set

g(ρ) := h(ρ)− ε

2
≥ 0 for all ρ ∈ D(f1),

and we reformulate our initial and boundary value problem as follows:

to find µ, ρ, and ξ, so as to solve(
ε+ 2g(ρ)

)
∂tµ+ µ g′(ρ) ∂tρ− div

(
κ(µ)∇µ

)
= 0 in Ω× (0, T ), (1.15)

δ∂tρ−∆ρ+ ξ + f ′2(ρ) = µ g′(ρ) , with ξ ∈ β(ρ), in Ω× (0, T ), (1.16)

(κ(µ)∇µ) · ν|Γ = ∂νρ|Γ = 0 on Γ× (0, T ), (1.17)

µ( · , 0) = µ0 and ρ( · , 0) = ρ0 in Ω. (1.18)

The global-in-time existence result we derive is more general than in [8], for two reasons: be-
cause it holds when the potential f includes a multivalued graph β (possibly with vertical seg-
ments, e.g., for f1 as in (1.7)) and only exploits the monotonicity property of β; and because the
atom mobility κ(µ) is allowed to depend in a generic nonlinear way on the chemical potential.
Note that problem (1.15)–(1.18) may become singular with respect to ρ due to the possible
occurrence of singularities of β; on the other hand, it may be also degenerate with respect to µ
since κ(µ) is allowed to vanish at µ = 0.

Our uniqueness result is also more general than in [8], because nonsmooth potentials could not
be handled with the technique there used, consisting in testing the difference of two equations
(1.11) by the time derivative of the difference of the two ρ components; however, just as in [8],
the proof is achieved under the assumption that κ(µ) = a constant.

Some directions for future research have already been explored by us under less general cir-
cumstances than those considered here: the long time behavior of system (1.11)–(1.14) and the
structure of the relative omega-limit set have been analysed by us in [8] and in [9], where we
also dealt with the asymptotics of (1.11)–(1.14) as ε → 0 and found a weaker solution in the
singular limit. Moreover, in [10] and [12] we studied two optimal control problems for systems
similar to (1.11)–(1.14): a distributed control problem in [10] and a boundary control problem
in [12]. Finally, in [11] we developed an existence theory for problem (1.1)–(1.4) when atom
mobility is allowed to depend on both µ and ρ.

This paper is organized as follows. In the next section, as anticipated, we discuss the physical
features of the phase segregation model we adopt. In Section 3, we state our assumptions and
results with the necessary mathematical accuracy; since here we do not take up asymptotic
procedures, without loss of generality we set ε = 1 in (1.15) and δ = 1 in (1.16). The existence
of solutions to problem (1.15)–(1.18) is proved in Section 4, their regularity properties in the
successive section. Our last Section 6 is devoted to the uniqueness proof.
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2 Short reasoned history of our mathematical model

The nonstandard phase-field model (1.11)–(1.14) can be regarded as a variant of the classic
Cahn-Hilliard system for diffusion-driven phase segregation by atom rearrangement:

∂tρ− κ∆µ = 0 , µ = −∆ρ+ f ′(ρ). (2.1)

Apart for the harmless choice κ = 1 for the mobility modulus in (1.11), one finds in (1.11)–(1.14)
two awkward nonlinear terms involving time derivatives. Usually, equations (2.1) are combined
in order to obtain the well-known Cahn-Hilliard equation:

∂tρ = κ∆(−∆ρ+ f ′(ρ)). (2.2)

Fried and Gurtin’s generalization of Cahn-Hilliard equation. In [15, 17], a broad general-
ization of (2.2) was achieved by proposing the following:

(i) to interpret the second of (2.1) as a balance of microforces:

div ξ+ π + γ = 0, (2.3)

where the distance microforce per unit volume is split into an internal part π and an
external part γ, and the contact microforce per unit area of a surface oriented by its
normal n is measured by ξ · n in terms of the microstress vector ξ;2

(ii) to regard the first of (2.1) as a balance law for the order parameter :

∂tρ = − div h + σ, (2.4)

where the pair (h , σ) is the inflow of ρ;

(iii) to demand that the constitutive choices for π, ξ,h , and the free energy density ψ, be
consistent in the sense of Coleman and Noll [5] with an ad hoc version of the Second
Law of Continuum Thermodynamics:

∂tψ + (π − µ)∂tρ− ξ · ∇(∂tρ) + h · ∇µ ≤ 0, (2.5)

that is, a postulated “dissipation inequality that accommodates diffusion” (cf. equation (3.6)
in [17]).

In [17], the following set of constitutive prescriptions was shown to be consistent with (iii):{
ψ = ψ̂(ρ,∇ρ), π̂(ρ,∇ρ, µ) = µ− ∂ρψ̂(ρ,∇ρ), ξ̂(ρ,∇ρ) = ∂∇ρψ̂(ρ,∇ρ)

}
.

(2.6)
Moreover, it was presumed that

h = −M∇µ, with M = M̂ (ρ,∇ρ, µ,∇µ), (2.7)

2In [14], the microforce balance is stated under form of a principle of virtual powers for microscopic motions.

4



with the tensor-valued mobility mapping M̂ satisfying the residual dissipation inequality

∇µ · M̂ (ρ,∇ρ, µ,∇µ)∇µ ≥ 0.

With the help of (2.3), (2.4), (2.6), and (2.7)1, a general equation for diffusive phase segregation
processes is arrived at, namely,

∂tρ = div
(
M∇

(
∂ρψ̂(ρ,∇ρ)− div

(
∂∇ρψ̂(ρ,∇ρ)

)
− γ
))

+ σ. (2.8)

The classic Cahn-Hilliard equation (2.2) is obtained from (2.8) by taking

ψ̂(ρ,∇ρ) = f(ρ) +
1

2
|∇ρ|2, M = κ1 , (2.9)

and by letting the external distance microforce γ and the order-parameter source term σ be
identically null.

An alternative generalization of Cahn-Hilliard equation. The Fried-Gurtin model was well
accepted in the mathematical community. In 2006, a largely modified version of it was proposed
[19]: while the crucial step (i) was retained, both the order-parameter balance (2.4) and the
dissipation inequality (2.5) were dropped and replaced, respectively, by the microenergy balance

∂tε = e+ w, e := − div h + σ, w := −π ∂tρ+ ξ · ∇(∂tρ), (2.10)

and the microentropy imbalance

∂tη ≥ − div h + σ, h := µh , σ := µσ. (2.11)

A further key feature of this new approach to modeling phase segregation by atomic rearrange-
ment is that the microentropy inflow (h , σ) is deemed proportional to the microenergy inflow
(h , σ) through the chemical potential µ, a positive field; consistently, the free energy is de-
fined to be

ψ := ε− µ−1η, (2.12)

with chemical potential playing the same role as coldness in the deduction of the heat equation.3

Combining (2.10)-(2.12) yields

∂tψ ≤ −η∂t(µ−1) + µ−1 h · ∇µ− π ∂tρ+ ξ · ∇(∂tρ), (2.13)

an inequality that replaces (2.5) in restricting à la Coleman-Noll the possible constitutive choices.
On taking all of the constitutive mappings delivering π, ξ, η, and h , dependent in principle on
ρ,∇ρ, µ,∇µ, and on choosing

ψ = ψ̂(ρ,∇ρ, µ) = −µ ρ+ f(ρ) +
1

2
|∇ρ|2, (2.14)

3As much as absolute temperature is a macroscopic measure of microscopic agitation, its inverse - the coldness
- measures microscopic quiet ; likewise, as argued in [19], the chemical potential can be seen as a macroscopic
measure of microscopic organization.

5



compatibility with (2.13) implies that we must have:
π̂(ρ,∇ρ, µ) = −∂ρψ̂(ρ,∇ρ, µ) = µ− f ′(ρ),

ξ̂(ρ,∇ρ, µ) = ∂∇ρψ̂(ρ,∇ρ, µ) = ∇ρ,

η̂(ρ,∇ρ, µ) = µ2∂µψ̂(ρ,∇ρ, µ)= −µ2ρ

 (2.15)

together with

ĥ(ρ,∇ρ, µ,∇µ) = Ĥ (ρ,∇ρ, µ,∇µ)∇µ, ∇µ · Ĥ (ρ,∇ρ, µ,∇µ)∇µ ≥ 0.

If we now choose for Ĥ the simplest expression H = κ1 , implying a constant and isotropic
mobility, and if we once again assume that the external distance microforce γ and the source
σ are null, then, with the use of (2.15) and (2.12), the microforce balance (2.3) and the energy
balance (2.10) become, respectively,

∆ρ+ µ− f ′(ρ) = 0 (2.16)

and
2ρ ∂tµ+ µ ∂tρ− κ∆µ = 0, (2.17)

a nonlinear system for the unknowns ρ and µ.

Insertion of the parameters ε and δ. Let us compare systems (2.16)–(2.17) and (2.1). Note
that (2.16) and (2.1)2 imply the same ‘static’ relation between µ and ρ; instead,(2.17) is rather
different from (2.1)1, for more than one reason: it is nonlinear; it features both time derivatives
of ρ and µ; and, in front of both ∂tµ and ∂tρ there are nonconstant factors that should remain
nonnegative during the evolution. Thus, the system (2.16)–(2.17) deserves a careful analysis.

We begun by attacking the problem as it was, prompted to optimism by the successful outcome
of a previous joint research effort [6, 7] in which we tackled the system of Allen-Cahn type
derived via the approach in [19] for no-diffusion phase-segregation processes. Unfortunately,
the evolution problem ruled by (2.16)–(2.17) turned out to be too difficult for us. Therefore, we
decided to study its regularized version (1.11)–(1.14), where equations (1.11) and (1.12) are
obtained by introducing the extra terms ε ∂tµ and δ ∂tρ in (2.17) and (2.16), respectively. Of
course, the positive coefficients ε and δ were intended to be made smaller and smaller by way
of an asymptotic procedure to be set up after the solvability of the regularized system were
proved.

Mathematically, the introduction of the ε−term is motivated by the desire to have a strictly
positive coefficient as a factor of ∂tµ in (2.17), so as to guarantee the parabolic structure of
equation (1.11); on the other hand, the introduction of the δ−term transforms (2.16) into an
Allen-Cahn equation with source µ, and is strongly reminiscent of a sort of regularization already
employed in various approaches to the so-called viscous Cahn-Hilliard equations (examples can
be found in [2, 3, 16, 18, 20] and in the references therein).

It is also possible to make clear what additional physics the regularizing perturbations we in-
troduced incorporate into the model. As to the term ε ∂tµ, it can be made to appear in the
microenergy balance (1.11) by modifying as follows the choice for the free energy in (2.14):

ψ = −µ
(
ρ+

ε

2

)
+ f(ρ) +

1

2
|∇ρ|2. (2.18)
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As to the term δ ∂tρ, it is enough to note that all is needed to make that term appear in the
microforce balance (1.12) is to add ∂tρ to the list of state variables we considered to analyze the
constitutive consequences of (2.13). This measure brings in the dissipation mechanism typical
of Allen-Cahn nondiffusional segregation processes, where dissipation depends essentially on
(∂tρ)2, in addition to Cahn-Hilliard’s |∇µ|2− dissipation (cf. [19]); and it opens the way to
splitting the distance microforce additively into an equilibrium and a nonequilibrium part, with
πeq = −∂ρψ̂(ρ,∇ρ, µ) = µ − f ′(ρ) the equilibrium part, just as in (2.15)1, and with πneq =
−δ ∂tρ the nonequilibrium part.

3 Main results

In this section, we state precisely the mathematical problem under investigation, fix our assump-
tions, and present our results. Let Ω to be a bounded connected open set in R3 with smooth
boundary Γ (the lower-dimensional cases can be treated with minor changes). We also intro-
duce a final time T ∈ (0,+∞) and set Q := Ω× (0, T ). Moreover, we set for convenience:

V := H1(Ω), H := L2(Ω), and W := {v ∈ H2(Ω) : ∂νv = 0 on Γ}, (3.1)

and we endow these spaces with their standard norms, for which we use a self-explanatory
notation like ‖ · ‖V . For p ∈ [1,+∞], we write ‖ · ‖p for the usual norm in Lp(Ω). As no
confusion can arise, the symbol ‖ · ‖p is used for the norm in Lp(Q) as well. Moreover, any
of the above symbols for the norms is used even for any power of these spaces. We remark
that the embeddings W ⊂ V ⊂ H are compact, since Ω is bounded and smooth. As V is
dense in H , we can identify H with a subspace of V ∗ in the usual way (i.e., so as to have

V ∗〈u, v〉V = (u, v)H for every u ∈ H and v ∈ V ); the embedding H ⊂ V ∗ is also compact.

We are now concerned with the structural assumptions to set on our system. As the chemical
potential is expected to be at least nonnegative, we assume that the function κ is defined just for
nonnegative arguments. However, one could study the more general mathematical problem of
finding solutions whose component µmight change its sign. In such a case, κ has to be defined
on the whole of R and must satisfy similar assumptions. We require that:

κ : [0,+∞)→ R is continuous, (3.2)

κ∗, κ
∗ ∈ (0,+∞) and r∗ ∈ [0,+∞), (3.3)

κ(r) ≤ κ∗ for every r ≥ 0 and κ(r) ≥ κ∗ for every r ≥ r∗, (3.4)

K(r) :=
∫ r

0
κ(s) ds for r ≥ 0; K is strictly increasing, (3.5)

f = f1 + f2 , f1 : R→ [0,+∞], f2 : R→ R, g : R→ [0,+∞), (3.6)

f1 is convex, proper, l.s.c., and f2 and g are C2 functions, (3.7)

f ′2, g, and g′ are Lipschitz continuous, (3.8)

β := ∂f1 and π := f ′2 . (3.9)

In the following,D(f1) andD(β) (⊆ D(f1)) denote the effective domains of f1 and β, respec-
tively.
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Remark 3.1. We observe that our assumptions on f and κ allow for strong singularities
(at the boundary of D(β)) and a possible degeneracy (in a right neighbourhood of 0) in
the equations for ρ and µ, respectively. The former fact is clear. As far as the latter is
concerned, we note that (3.5) is satisfied if and only if κ is nonnegative and the set where
κ vanishes has empty interior. So, r∗ = 0 means uniform parabolicity for equation (1.1).
On the contrary, if r∗ > 0, the equation can degenerate, e.g., at the origin (or even in
rather big set of small values). An example is given by κ(r) = tanh rm−1 with m > 1. In
this case, (1.1) roughly behaves like the porous medium equation (slow diffusion) in the
region where µ is small.

Remark 3.2. It is known that any proper, convex and lower semicontinuous function is
bounded from below by an affine function (see, e.g., [1, Prop. 2.1, p. 51]). Hence, our
assumption f1 ≥ 0 looks reasonable, because one can suitably modify the smooth pertur-
bation f2 by adding a straight line. Moreover, the other positivity condition, g ≥ 0, is just
needed on the set D(β), while g can take negative values outside of D(β). Finally, (3.8)
implies that, within the range of relevant values of r, the functions f ′2(r), g(r), and g′(r)
grow at most linearly with respect to |r|, while f2(r) grows at most quadratically in |r|.

For the initial data, we postulate:

µ0 ∈ V, ρ0 ∈ W, µ0 ≥ 0 and ρ0 ∈ D(β) a.e. in Ω, (3.10)

and there exists some ξ0 ∈ H such that ξ0 ∈ β(ρ0) a.e. in Ω. (3.11)

Since f1 is convex and f2 is smooth, the above assumptions entail f(ρ0) ∈ L1(Ω).

Now, we introduce the a priori regularity that we require from any solution (µ, ρ, ξ) to our prob-
lem. Note that equation (1.2) reduces for any given µ to a rather standard phase-field equation.
Therefore, it is natural to look for pairs (ρ, ξ) that satisfy

ρ ∈ W 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;W ), (3.12)

ξ ∈ L∞(0, T ;H), (3.13)

and to solve the subproblem in a strong form, namely

∂tρ−∆ρ+ ξ + π(ρ) = µ g′(ρ) and ξ ∈ β(ρ) a.e. in Q, (3.14)

ρ(0) = ρ0 a.e. in Ω. (3.15)

We note that (3.12) also contains the Neumann boundary condition for ρ (see (3.1) for the
definition of W ). On the contrary, the situation is different for the component µ. In the case of
uniform parabolicity, i.e., if r∗ = 0, the coefficient κ(µ) is bounded away from zero, and we can
require that

µ ∈ H1(0, T ;H) ∩ L∞(0, T ;V ), µ ≥ 0 a.e. in Q, (3.16)

div
(
κ(µ)∇µ

)
∈ L2(0, T ;H), (3.17)
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and that µ satisfy∫
Ω

(
1 + 2g(ρ(t))

)
∂tµ(t) v +

∫
Ω

µ(t) g′(ρ(t)) ∂tρ(t) v +

∫
Ω

κ(µ(t))∇µ(t) · ∇v = 0

for every v ∈ V and for a.a. t ∈ (0, T ), (3.18)

µ(0) = µ0 a.e. in Ω. (3.19)

Thus, the equation holds in a strong sense, i.e.,(
1 + 2g(ρ)

)
∂tµ+ µ g′(ρ) ∂tρ− div

(
κ(µ)∇µ

)
= 0 a.e. in Q, (3.20)

while the Neumann boundary condition is understood in the usual weak sense. Furthermore,
we observe that (3.16)–(3.18) imply further regularity for µ whenever κ is smoother, thanks to
the regularity theory of quasilinear elliptic equations.

If instead we allow r∗ to be positive, such a formulation is too strong, since no sufficient infor-
mation on the gradient∇µ can be obtained. As a consequence, the same happens for the time
derivative ∂tµ. For that reason, we rewrite equation (3.20) in the different form

∂t
(
1 + 2g(ρ)µ

)
− µg′(µ)∂tρ−∆K(µ) = 0. (3.21)

More precisely, we also account for the initial and Neumann boundary conditions and accord-
ingly rewrite (3.18)–(3.19). In conclusion, we require the lower regularity

µ ∈ L∞(0, T ;H), µ ≥ 0 a.e. in Q, K(µ) ∈ H1(0, T ;H) ∩ L∞(0, T ;V ), (3.22)

(1 + 2g(ρ))µ ∈ H1(0, T ;V ∗), (3.23)

and replace (3.18)–(3.19) by

〈∂t
(
(1 + 2g(ρ))µ

)
(t), v〉 −

∫
Ω

(
µg′(ρ)∂tρ

)
(t) v +

∫
Ω

∇K(µ(t)) · ∇v = 0

for every v ∈ V and for a.a. t ∈ (0, T ), (3.24)(
(1 + 2g(ρ))µ

)
(0) =

(
1 + 2g(ρ0)

)
µ0. (3.25)

In this situation, (3.21) is satisfied in the sense of distributions, only.

Remark 3.3. We observe that even the middle term of (3.24) is meaningful, as we imme-
diately see. First, we note that

ρ ∈ C0([0, T ];C0(Ω)) = C0(Q), (3.26)

directly from (3.12) and the compact embedding W ⊂ C0(Ω) (see, e.g., [21, Sect. 8,
Cor. 4]), whence g′(ρ) ∈ C0(Q). Next, (3.22) and the embedding V ⊂ L4(Ω) im-
ply that K(µ) ∈ L∞(0, T ;L4(Ω)), whence also µ ∈ L∞(0, T ;L4(Ω)), since K(r) be-
haves like r for big |r| by (3.4). Finally, ∂tρ ∈ L∞(0, T ;H). Therefore, µg′(ρ)∂tρ ∈
L∞(0, T ;L4/3(Ω)). On the other hand, v ∈ L4(Ω) whenever v ∈ V .
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Remark 3.4. Note that (3.25) makes sense because (1 + 2g(ρ))µ ∈ C0([0, T ];V ∗) (due
to (3.23)). However, by accounting for (3.12) and the regularity of g, we see that (3.25) can
be read in the simpler form (3.19) also in this case. Indeed, the function (1 + 2g(ρ))µ also
belongs to L∞(0, T ;H). As is well known (and easy to prove), this implies that it actually
is an H-valued function which is weakly continuous, in addition. It easily follows that µ
enjoys the same property.

Here are our results. The first two state that the strong and weak formulations are equivalent in
the case r∗ = 0 and that there exists a weak solution in the general case. Due to the former,
the latter also proves the existence of a strong solution if r∗ = 0. Both results will be proved in
Section 4.

Proposition 3.5. Assume (3.2)–(3.9), (3.10)–(3.11), and r∗ = 0. Then, any triplet (µ, ρ, ξ)
satisfing (3.12)–(3.13), (3.22)–(3.23) and solving problem (3.14)–(3.15), (3.24)–(3.25) also sat-
isfies (3.16)–(3.19).

Theorem 3.6. Assume (3.2)–(3.9) and (3.10)–(3.11). Then, there exists at least one triplet
(µ, ρ, ξ) satisfing (3.12)–(3.13), (3.22)–(3.23) and solving problem (3.14)–(3.15), (3.24)–(3.25).

We notice that no further assumptions are needed to ensure boundedness for ρ, due to (3.26).
As far as the first component is concerned, we have the following boundedness result.

Theorem 3.7. Assume (3.2)–(3.9), (3.10)–(3.11), and let µ0 ∈ L∞(Ω). Then, the component
µ of any triplet (µ, ρ, ξ) satisfing (3.12)–(3.13), (3.22)–(3.23) and solving problem (3.14)–(3.15)
and (3.24)–(3.25) is essentially bounded.

The next results hold if we assume that κ is constant. We notice that we could weaken this
assumption in our regularity result, while we are not able to do the same as far as uniqueness
is concerned, unfortunately. In order to simplify the regularity proof, we take κ = 1 at once. In
the forthcoming Remark 5.4, we will sketch how to deduce even further regularity.

Theorem 3.8. Assume (3.2)–(3.9), (3.10)–(3.11), µ0 ∈ W , and κ = 1. Then, any triplet
(µ, ρ, ξ) satisfing (3.12)–(3.13), (3.16) and solving problem (3.14)–(3.15) and (3.18)–(3.19)
enjoys the regularity property

µ ∈ W 1,p(0, T ;H) ∩ Lp(0, T ;W ) for every p ∈ [1,+∞). (3.27)

Theorem 3.9. Assume (3.2)–(3.9), (3.10)–(3.11), µ0 ∈ W , and κ = 1. Then, the triplet
(µ, ρ, ξ) satisfing (3.12)–(3.13), (3.16) and solving problem (3.14)–(3.15) and (3.18)–(3.19) is
unique.

Throughout the paper, we account for the well-known embedding V ⊂ Lp(Ω) for 1 ≤ p ≤ 6
and the related Sobolev inequality:

‖v‖p ≤ C‖v‖V for every v ∈ V and 1 ≤ p ≤ 6, (3.28)
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where C depends on Ω only. Moreover, we recall that the embeddings V ⊂ L4(Ω) (more
generally V ⊂ Lp(Ω) with p < 6) and W ⊂ C0(Ω) are compact and use the corresponding
inequality

‖v‖4 ≤ ε‖∇v‖H + Cε‖v‖H for every v ∈ V and ε > 0, (3.29)

where Cε depends on Ω and ε, only. Furthermore, we make repeated use of the notation

Qt := Ω× (0, t) for t ∈ [0, T ], (3.30)

and of the well-known Hölder inequality and the elementary Young inequality

ab ≤ εa2 +
1

4ε
b2 for every a, b ≥ 0 and ε > 0. (3.31)

Finally, throughout the paper we use a small-case italic c for different constants that may only
depend on Ω, the final time T , the shape of the nonlinearities f and g, and the properties of the
data involved in the statements at hand; a notation like cε signals a constant that depends also
on the parameter ε. The reader should keep in mind that the meaning of c and cε might change
from line to line and even in the same chain of inequalities, whereas those constants that we
need to refer to are always denoted by capital letters, just like C in (3.28).

4 Existence

In this section, we first show the equivalence result stated in Proposition 3.5. Then, we prove
Theorem 3.6, which ensures the existence of a weak solution.

Proof of Proposition 3.5. As r∗ = 0, we have κ(r) ≥ κ∗ for every r ≥ 0. This implies that
the inverse function K−1 : [0,+∞)→ [0,+∞) is Lipschitz continuous. Hence, (3.22) implies
that

µ = K−1(K(µ)) ∈ H1(0, T ;H) ∩ L∞(0, T ;V ),

i.e., that (3.16) holds. In particular, we can write

∇K(µ) = κ(µ)∇µ and ∂t
(
(1 + 2g(ρ))µ

)
= µ∂t(1 + 2g(ρ)) + (1 + 2g(ρ))∂tµ

and thus replace the weak formulation by the strong one. Next, we note that (3.18) implies that
(3.20) holds in the sense of distribution, whence (3.17) follows by comparison. Finally, (3.19)
holds even in the general case, as we have observed in Remark 3.4. �

Now we prove Theorem 3.6. Even though our proof closely follows the argumentation of [8], we
present the whole procedure and sometimes give some detail, since the changes with respect
to the quoted paper are spread in the whole calculation. The starting point is an approximating
problem which is still based on a time delay in the right-hand side of (3.14). Namely, we define
the translation operator Tτ : L1(0, T ;H)→ L1(0, T ;H) depending on a time step τ > 0 by
setting, for v ∈ L1(0, T ;H) and for a.a. t ∈ (0, T ),

(Tτv)(t) := v(t− τ) if t > τ and (Tτv)(t) := µ0 if t < τ (4.1)
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(but the same notation Tτv will be used even for functions v that are defined in some subinterval
[0, T ′] of [0, T ]), and replace µ by Tτµ in (3.14), essentially. However, we modify the equation
for µ at the same time. Precisely, we force uniform parabolicity and allow the solution to take
negative values, if possible. To do that, we define κτ : R → R and the related function Kτ

used later on by

κτ (r) := κ(|r|) + τ and Kτ (r) :=

∫ r

0

κτ (s) ds for r ∈ R. (4.2)

So, the approximating problem consists of the following equations(
1 + 2g(ρτ )

)
∂tµτ + µτ g

′(ρτ ) ∂tρτ − div
(
κτ (µτ )∇µτ

)
= 0 a.e. in Q, (4.3)

∂tρτ −∆ρτ + ξτ + π(ρτ ) = (Tτµτ ) g
′(ρτ ) and ξτ ∈ β(ρτ ) a.e. in Q, (4.4)

complemented with the homogeneous Neumann boundary conditions for both µτ and ρτ and
the initial conditions µτ (0) = µ0 and ρτ (0) = ρ0. For convenience, we allow τ to take just
discrete values, namely, τ = T/N , where N is any positive integer. �

Lemma 4.1. The approximating problem has a solution (µτ , ρτ , ξτ ) satisfying the analogues of
(3.12)–(3.13) and (3.16)–(3.17).

Proof. We just give a sketch. As in [8], we inductively solve N problems on the time intervals
In = [0, tn], n = 1, . . . , N , by constructing the solution directly on the whole of In at each
step. Namely, given µn−1, which is defined in Ω × In−1, we note that Tτµn−1 is well defined
and known in Ω× In (even in the starting case n = 1) and solves the boundary value problem
for ρn given by the phase-field equations

∂tρn −∆ρn + ξn + π(ρn) = (Tτµn) g′(ρn) and ξn ∈ β(ρn) in Ω× In, (4.5)

complemented with the boundary and initial conditions just mentioned for ρτ . Such a problem is
quite standard and has a unique solution in a proper (rather weak) functional analytic framework.
Once ρn is constructed, we solve the parabolic equation(

1 + 2g(ρn)
)
∂tµn + µn g

′(ρn) ∂tρn − div
(
κτ (µn)∇µn

)
= 0 in Ω× In, (4.6)

together with the boundary and initial conditions prescribed for µτ . We note that g ≥ 0 and
κτ (r) ≥ τ for every r ∈ R, so that the equation is uniformly parabolic. Therefore, the problem
to be solved has a unique solution in a proper space provided that the coefficient g′(ρn)∂tρn
is not too irregular. So, we should prove that, step by step, we get the right regularity for ρn
and µn. This could be done by induction, as in [8], with some modifications due to our more
general framework. We omit this detail and just observe that the needed a priori estimates are
close (and even simpler, since τ is fixed here) to the ones performed later on in order to let τ
tend to zero. The final point is µn ≥ 0. We give the proof in detail. We multiply equation (4.6)
by −µ−n := −(−µn)+, the negative part of µn, and integrate over Qt with any t ∈ In. We
observe that[(

1 + 2g(ρn(t))
)
∂tµn + µn g(ρn) ∂tρn

]
(−µ−n ) =

1

2
∂t
(
(1 + 2g(ρn)) |µ−n |2

)
.
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Hence, by using µ0 ≥ 0, and owing to the boundary condition, we have

1

2

∫
Ω

(1 + 2g(ρn(t))) |µ−n (t)|2 +

∫
Qt

κτ (µn)|∇µ−n |2 = 0 for every t ∈ In.

Since g and κτ are nonnegative, this implies µ−n = 0, that is, µn ≥ 0 a.e. in Ω × In. Once
all this is checked, the finite sequence (µn, ρn, ξn), n = 1, . . . , N , is actually constructed, and
it is clear that a solution to the approximating problem we are looking for is obained by simply
taking n = N .

Although the solution to the approximating problem is unique, we do not need uniqueness in the
following and just fix a solution (µτ , ρτ , ξτ ) for each τ . Our aim is to let τ tend to zero in order
to obtain a solution as stated in Theorem 3.6. Our proof uses compactness arguments and thus
relies on a number of uniform (with respect to τ ) a priori estimates. Clearly, in performing them,
we can take τ as small as we desire, and it will be suitable to assume that τ ≤ κ∗. In order
to make the formulas more readable, we shall omit the index τ in the calculations, waiting for
writing µτ and ρτ only when each estimate is established.

First a priori estimate. Let us test (4.3) by µτ and point out that[(
1 + 2g(ρ)

)
∂tµ+ µ g′(ρ) ∂tρ

]
µ =

1

2
∂t
[
(1 + 2g(ρ))µ2

]
.

Therefore, by integrating over (0, t), where t ∈ [0, T ] is arbitrary, we obtain∫
Ω

(
1 + 2g(ρ(t))

)
|µ(t)|2 +

∫
Qt

κτ (µ)|∇µ|2 =

∫
Ω

(1 + 2g(ρ0))µ2
0 .

Hence, we recall that g ≥ 0 and observe that κ2
τ (r) ≤ 2κ∗κτ (r) for every r ∈ R by (3.4) and

τ ≤ κ∗. We conclude that

‖µτ‖L∞(0,T ;H) + ‖Kτ (µτ )‖L2(0,T ;V ) ≤ c. (4.7)

Actually, we have proved more, namely

‖K∗τ (µτ )‖L2(0,T ;V ) ≤ c where K∗τ (r) :=

∫ r

0

(κτ (s))
1/2 ds for r ∈ R.

Moreover, we observe that K has a linear growth, so that (4.7) also yields

‖Kτ (µτ )‖L∞(0,T ;H) ≤ c. (4.8)

An implication of (4.7)–(4.8), along with (4.1) and (3.10), is

‖Tτµτ‖L∞(0,T ;H) + ‖TτKτ (µτ )‖L∞(0,T ;H)∩L2(0,T ;V ) ≤ c. (4.9)

Consequence. The Sobolev inequality (3.28) and estimate (4.7) imply that

‖Kτ (µτ )‖L2(0,T ;L6(Ω)) ≤ c.
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On the other hand, (3.4) implies that Kτ (r) ≥ κ∗r − c for every r ≥ 0. We deduce that

‖µτ‖L2(0,T ;L6(Ω)) ≤ c (4.10)

Second a priori estimate. Let us add ρτ on both sides of (4.4) and test by ∂tρτ . We have
that ∫

Qt

|∂tρ|2 +
1

2
‖ρ(t)‖2

V +

∫
Ω

f1(ρ(t))

=
1

2
‖ρ0‖2

V +

∫
Ω

f(ρ0) +
1

2

∫
Ω

(
ρ2(t)−2f2(ρ(t))

)
+

∫
Qt

g′(ρ)(Tτµ)∂tρ

≤ c+ c

∫
Ω

|ρ(t)|2 +
1

4

∫
Qt

|∂tρ|2 + c‖Tτµ‖2
L∞(0,T ;H),

for every t ∈ [0, T ]. In view of the chain rule and Young’s inequality (3.31), we observe that

c

∫
Ω

|ρ(t)|2 ≤ c

∫
Ω

|ρ0|2 +
1

4

∫
Qt

|∂tρ|2 + c

∫ t

0

‖ρ(s)‖2
H ds.

Hence, as f1 is nonnegative, on account of (4.9), and with the help of the Gronwall lemma, we
deduce that ∫

Qt

|∂tρ|2 + ‖ρ(t)‖2
V +

∫
Ω

f1(ρ(t)) ≤ c.

Therefore, we obtain:

‖ρτ‖H1(0,T ;H)∩L∞(0,T ;V ) ≤ c and ‖f(ρτ )‖L∞(0,T ;L1(Ω)) ≤ c. (4.11)

Third a priori estimate. We rewrite (4.4) as

−∆ρ+ β(ρ) 3 −∂tρ− π(ρ) + (Tτµ)g′(ρ)

and note that the right-hand side is bounded in L2(0, T ;H), thanks to the Lipschitz continuity
of π and g′ and to the previous estimates. By a standard argument (formally test by either−∆ρ
or β(ρ) and use the regularity theory for elliptic equations), we first recover that

‖∆ρ(s)‖2
H + ‖ξ(s)‖2

H ≤ 2‖−∂tρ(s)− π(ρ(s)) + ((Tτµ)g′(ρ))(s)‖2
H (4.12)

for a.a. s ∈ (0, T ), and finally conclude that

‖ρτ‖L2(0,T ;W ) ≤ c and ‖ξτ‖L2(0,T ;H) ≤ c. (4.13)

Fourth a priori estimate. Our aim is to improve the estimates (4.11) and (4.13). To this end,
we proceed formally, at least at the beginning, for the sake of simplicity. However, this procedure
could be made rigorous by suitably regularizing equation (4.4) (with respect to ρ, only, i.e.,
keeping µ fixed), the main tool being the Yosida regularization of maximal monotone operators
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(see, e.g., [4, p. 28]; see also the proof of Lemma 3.1 of [8] for a further regularization). Such a
theory yields, in particular, the estimate

‖∂tu(0)‖H ≤ ‖ψ(0) + ∆ρ0‖H + min
η∈β(ρ0)

‖η‖H (4.14)

for the unique solution (u, ω) to the equations

∂tu−∆u+ ω = ψ := g′(ρ)Tτµ− π(ρ) and ω ∈ β(u),

complemented with the same initial and boundary conditions as those prescribed for ρ. Note that
in (4.14) β is understood as the induced maximal monotone operator from H to H . Observe
that (u, ω) = (ρ, ξ); then the application of (4.14), in combination with our assumptions on ρ0

(see (3.11), in particular), leads to

‖∂tρτ (0)‖H ≤ c
(
‖µ0‖H + ‖ρ0‖W + 1 + ‖ξ0‖H

)
= c. (4.15)

We use (4.15) in the subsequent calculation, where we proceed formally, as announced (how-
ever, our procedure becomes completely rigorous after a while). In particular, we write β(ρ) in
place of ξ and treat β as if it were a smooth function. We differentiate (4.4) with respect to time
and test the resulting equation by ∂tρ. We obtain:

1

2

∫
Ω

|∂tρ(t)|2 +

∫
Qt

|∇∂tρ|2 +

∫
Qt

β′(ρ)|∂tρ|2

=
1

2

∫
Ω

|(∂tρ)(0)|2 −
∫
Qt

π′(ρ)|∂tρ|2 +

∫
Qt

g′′(ρ)(Tτµ)|∂tρ|2

+

∫
Qt

g′(ρ)∂t(Tτµ) ∂tρ

≤ 1

2

∫
Ω

|(∂tρ)(0)|2 + c

∫
Qt

(1 + Tτµ)|∂tρ|2 +

∫
Qt

g′(ρ)∂t(Tτµ) ∂tρ. (4.16)

We treat each term on the right-hand side separately. The first one is estimated by (4.15). In
order to deal with the second one, we first account for the Hölder inequality. Then, we also
invoke (4.7), the compact embedding V ⊂ L4(Ω) (see (3.29)), and (4.11). For every ε > 0
we infer that ∫

Qt

(1 + Tτµ)|∂tρ|2 ≤
∫ t

0

‖1 + (Tτµ)(s)‖H‖∂tρ(s)‖2
4 ds

≤ c

∫ t

0

‖∂tρ(s)‖2
4 ds ≤ ε

∫
Qt

|∇∂tρ|2 + cε

∫
Qt

|∂tρ|2

≤ ε

∫
Qt

|∇∂tρ|2 + cε . (4.17)

The estimate of the last term of (4.16) needs much more work. We recall that Tτµ is constant
with respect to time on the interval (0, τ) and first compute ∂tµ from (4.3). Then we integrate
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by parts and repeatedly exploit the Hölder, Sobolev, and Young inequalities. We obtain:∫
Qt

g′(ρ)∂t(Tτµ) ∂tρ =

∫ t−τ

0

∫
Ω

∂tµ(s) g′(ρ(s+ τ))∂tρ(s+ τ) ds

=

∫ t−τ

0

∫
Ω

1

1 + 2g(ρ(s))

[
div
(
κτ (µ)(s)∇µ(s)

)
− µ(s)g′(ρ(s))∂tρ(s)

]
∂tg(ρ(s+ τ)) ds

=

∫ t−τ

0

∫
Ω

κτ (µ)(s)∇µ(s) · ∇∂tg(ρ(s+ τ))

1 + 2g(ρ(s))
ds

−
∫ t−τ

0

∫
Ω

g′(ρ(s)) g′(ρ(s+ τ))

1 + 2g(ρ(s))
µ(s)∂tρ(s)∂tρ(s+ τ) ds, (4.18)

and now treat the last two integrals separately, by accounting for our structural assumptions. We
have ∫ t−τ

0

∫
Ω

κτ (µ)(s)∇µ(s) · ∇∂tg(ρ(s+ τ))

1 + 2g(ρ(s))
ds

=

∫ t−τ

0

∫
Ω

∇Kτ (µ)(s) · ∇ g′(ρ(s+ τ))∂tρ(s+ τ)

1 + 2g(ρ(s))
ds

≤ c

∫ t−τ

0

∫
Ω

|∇Kτ (µ)(s)| |∇∂tρ(s+ τ)| ds

+ c

∫ t−τ

0

∫
Ω

|∇Kτ (µ)(s)| |∇ρ(s)| |∂tρ(s+ τ)| ds

+ c

∫ t−τ

0

∫
Ω

|∇Kτ (µ)(s)| |∇ρ(s+ τ)| |∂tρ(s+ τ)| ds. (4.19)

For every ε ∈ (0, 1) there holds∫ t−τ

0

∫
Ω

|∇Kτ (µ)(s)| |∇∂tρ(s+ τ)| ds

≤ ε

∫
Qt

|∇∂tρ|2 + cε

∫
Qt

|∇Kτ (µ)|2 ≤ ε

∫
Qt

|∇∂tρ|2 + cε, (4.20)

thanks to (4.7). On the other hand, we also have∫ t−τ

0

∫
Ω

|∇Kτ (µ)(s)| |∇ρ(s)| |∂tρ(s+ τ)| ds

≤
∫ t−τ

0

‖∇Kτ (µ)(s)‖2‖∇ρ(s)‖4‖∂tρ(s+ τ)‖4 ds

≤ ε

∫ t

0

‖∂tρ(s)‖2
V ds+ cε

∫ t−τ

0

‖∇Kτ (µ)(s)‖2
H‖∇ρ(s)‖2

V ds

≤ ε

∫
Qt

|∇∂tρ|2 + c

∫
Qt

|∂tρ|2 + cε

∫ t−τ

0

‖∇Kτ (µ)(s)‖2
H‖∇ρ(s)‖2

V ds

≤ ε

∫
Qt

|∇∂tρ|2 + c+ cε

∫ t−τ

0

‖∇Kτ (µ)(s)‖2
H‖∇ρ(s)‖2

V ds. (4.21)
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In the last inequality we have used (4.11). However, the above estimate has to be improved. To
this end, we use the regularity theory for linear elliptic equations and estimates (4.9) and (4.11)
again. Indeed, with the help of (4.12) we have:

‖∇ρ(s)‖2
V ≤ c

(
‖ρ(s)‖2

V + ‖∆ρ(s)‖2
H

)
≤ c
(
‖∂tρ(s)‖2

H + 1
)
.

Therefore, the above estimate becomes∫ t−τ

0

∫
Ω

|∇Kτ (µ)(s)| |∇ρ(s)| |∂tρ(s+ τ)| ds

≤ ε

∫
Qt

|∇∂tρ|2 + cε

∫ t

0

‖∇Kτ (µ)(s)‖2
H‖∂tρ(s)‖2

H ds+ cε . (4.22)

Analogously, one shows that∫ t−τ

0

∫
Ω

|∇Kτ (µ)(s)| |∇ρ(s+ τ)| |∂tρ(s+ τ)| ds

≤ ε

∫
Qt

|∇∂tρ|2 + cε

∫ t

0

‖∇(TτKτ (µ))(s)‖2
H ‖∂tρ(s)‖2

H ds+ cε . (4.23)

Thus, by collecting (4.20) and (4.22)–(4.23), we deduce that (4.19) yields∫ t−τ

0

∫
Ω

κτ (µ)(s)∇µ(s) · ∇ ∂tρ(s+ τ)

1 + 2g(ρ(s))
ds ≤ ε

∫
Qt

|∇∂tρ|2

+ cε

∫ t

0

(
‖∇Kτ (µ)(s)‖2

H + ‖∇(TτKτ (µ))(s)‖2
H

)
‖∂tρ(s)‖2

H ds+ cε (4.24)

for every ε > 0. Let us come to the last term of (4.18). By using the compacness inequality
(3.29), and (4.7) as well, we have

−
∫ t−τ

0

∫
Ω

g′(ρ(s))g′(ρ(s+ τ))

1 + 2g(ρ(s))
µ(s)∂tρ(s)∂tρ(s+ τ) ds

≤ c

∫ t−τ

0

‖µ(s)‖4‖∂tρ(s+ τ)‖4‖∂tρ(s)‖2 ds

≤ ε

∫ t−τ

0

‖∂tρ(s+ τ)‖2
V ds+ cε

∫ t

0

‖µ(s)‖2
4‖∂tρ(s)‖2

H ds

≤ ε

∫ t

0

‖∇∂tρ(s)‖2
H ds+ c+ cε

∫ t

0

‖µ(s)‖2
4‖∂tρ(s)‖2

H ds. (4.25)

Therefore, due to (4.24) and (4.25), (4.18) becomes∫
Qt

g′(ρ)∂t(Tτµ) ∂tρ ≤ 2ε

∫
Qt

|∇∂tρ|2 + cε

∫ t

0

‖µ(s)‖2
4‖∂tρ(s)‖2

H ds

+cε

∫ t

0

(
‖∇Kτ (µ)(s)‖2

H + ‖∇(TτKτ (µ))(s)‖2
H

)
‖∂tρ(s)‖2

H ds+ cε . (4.26)
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At this point, we combine (4.15), (4.17), (4.26) with (4.16) and choose ε small enough. As the
last integral on the left-hand side is nonnegative since f1 is convex, we obtain∫

Ω

|∂tρ(t)|2 +

∫
Qt

|∇∂tρ|2 ≤ c

∫ t

0

φ(s)‖∂tρ(s)‖2
H ds+ c

where φ(s) := ‖µ(s)‖2
4 + ‖∇Kτ (µ)(s)‖2

H + ‖∇(TτKτ (µ))(s)‖2
H .

As φ ∈ L1(0, T ) by (4.7) and (4.10), we can apply the Gronwall lemma and conclude that

‖∂tρτ‖L∞(0,T ;H)∩L2(0,T ;V ) ≤ c. (4.27)

Consequence. We have −∆ρτ + ξτ = ψ := −∂tρτ + g′(ρτ )Tτµτ ∈ L∞(0, T ;H) due
to (4.7) and (4.27). Therefore, by a standard argument (formally multiply by −∆ρτ at any fixed
time), we deduce that both −∆ρτ and ξτ belong to L∞(0, T ;H). Owing to elliptic regularity,
we conclude that

‖ρτ‖L∞(0,T ;W ) ≤ c and ‖ξτ‖L∞(0,T ;H) ≤ c, (4.28)

whence also

‖ρτ‖L∞(Q) + ‖g(ρτ ))‖L∞(Q) + ‖g′(ρτ ))‖L∞(Q) + ‖π(ρτ ))‖L∞(Q) ≤ c, (4.29)

due to the continuous embeddingW ⊂ L∞(Ω) and the continuity of g, g′, and π (note however
that g′ is a bounded function since g is Lipschitz continuous).

Fifth a priori estimate. We write (4.3) as ∂t
(
(1 + 2g(ρ))µ

)
= ∆Kτ (µ) + g′(ρ)µ∂tρ. Thus,

we have for every v ∈ L2(0, T ;V )∣∣∣∣∫
Q

∂t
(
(1 + 2g(ρ))µ

)
v

∣∣∣∣ =

∣∣∣∣−∫
Q

∇Kτ (µ) · ∇v +

∫
Q

g′(ρ)µ∂tρ v

∣∣∣∣
≤ ‖Kτ (µ)‖L2(0,T ;V )‖v‖L2(0,T ;V ) + ‖∂tρ‖L∞(0,T ;H)‖µ‖L2(0,T ;L4(Ω))‖v‖L2(0,T ;L4(Ω))

≤
(
‖Kτ (µ)‖L2(0,T ;V ) + c‖∂tρ‖L∞(0,T ;H)‖µ‖L2(0,T ;L4(Ω))

)
‖v‖L2(0,T ;V ).

By accounting for (4.7), (4.27), and (4.10), we deduce that

‖∂t
(
(1 + 2g(ρτ ))µτ

)
‖L2(0,T ;V ∗) ≤ c. (4.30)

Sixth a priori estimate. We test (4.3) by ∂tKτ (µ) = κτ (µ)∂tµ and obtain∫
Qt

(1 + 2g(ρ))κτ (µ)|∂tµ|2 +
1

2

∫
Ω

|∇Kτ (µ(t))|2

=
1

2

∫
Ω

|∇Kτ (µ0)|2 −
∫
Qt

g′(ρ)∂tρ µ∂tKτ (µ) (4.31)

for every t ∈ (0, T ). Note that the first term on the left-hand side can be estimated from below
as follows∫

Qt

(1 + 2g(ρ))κτ (µ)|∂tµ|2 ≥
∫
Qt

κ2
τ (µ)

2κ∗
|∂tµ|2 =

1

2κ∗

∫
Qt

|∂tKτ (µ)|2. (4.32)
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Now, we deal with the right-hand side of (4.31). The first term being trivial thanks to (3.10)1, we
come to the second one. We invoke the Young, Hölder, and Sobolev inequalities and have

−
∫
Qt

g′(ρ)∂tρ µ∂tKτ (µ) ≤ 1

4κ∗

∫
Qt

|∂tKτ (µ)|2 + c

∫ t

0

‖µ(s)‖2
4‖∂tρ(s)‖2

4 ds

≤ 1

4κ∗

∫
Qt

|∂tKτ (µ)|2 + c

∫ t

0

‖µ(s)‖2
4‖∂tρ(s)‖2

V ds. (4.33)

Now, we observe that (3.4) yields Kτ (r) ≥ κ∗r − c∗ for every r ≥ 0, where c∗ depends on
the structural assumptions, only. Hence, by owing to (4.8) as well, we deduce

‖µ(s)‖2
4 ≤ c

(
‖Kτ (µ)(s)‖2

4 + 1
)
≤ c
(
‖Kτ (µ)(s)‖2

V + 1
)

≤ c‖∇Kτ (µ)(s)‖2
H + c‖Kτ (µ)(s)‖2

H + c ≤ c‖∇Kτ (µ)(s)‖2
H + c

for a.a. s ∈ (0, T ). By combining (4.32) and (4.33) with (4.31), we obtain

1

4κ∗

∫
Qt

|∂tKτ (µ)|2 +
1

2

∫
Ω

|∇Kτ (µ(t))|2 ≤ c+ c

∫ t

0

φ(s)
(
‖∇Kτ (µ)(s)‖2

H + 1
)
ds

where φ(s) := ‖∂tρ(s)‖2
V .

As φ ∈ L1(0, T ) by (4.27), we can apply the Gronwall lemma and conclude that

‖Kτ (µτ )‖H1(0,T ;H)∩L∞(0,T ;V ) ≤ c. (4.34)

Consequence. By arguing as we did for (4.10), we derive that

‖µτ‖L∞(0,T ;L6(Ω)) ≤ c. (4.35)

Limit and conclusion. By the above estimates, there exist a triplet (µ, ρ, ξ), with µ ≥ 0 a.e.
in Q, and functions k and ζ such that

µτ → µ weakly star in L∞(0, T ;L6(Ω)), (4.36)

ρτ → ρ weakly star in L∞(0, T ;W ), (4.37)

∂tρτ → ∂tρ weakly star in L∞(0, T ;H) ∩ L2(0, T ;V ), (4.38)

ξτ → ξ weakly star in L∞(0, T ;H), (4.39)

Kτ (µτ )→ k weakly star in H1(0, T ;H) ∩ L∞(0, T ;V ), (4.40)

ζτ := (1 + 2g(ρτ ))µτ → ζ weakly star in H1(0, T ;V ∗) ∩ L∞(0, T ;L6(Ω)), (4.41)

at least for a susequence τ = τi↘0. By (4.37)–(4.38), (4.40), and the compact embeddings
W ⊂ C0(Ω) and V ⊂ H , we can apply well-known strong compactness results (see, e.g.,
[21, Sect. 8, Cor. 4]) and have that

ρτ → ρ strongly in C0(Q) (4.42)

Kτ (µτ )→ k strongly in C0([0, T ];H) and a.e. in Q. (4.43)
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The weak convergence (4.39) and (4.42) imply that ξ ∈ β(ρ) a.e. in Q, as is well known (see,
e.g., [4, Prop. 2.5, p. 27]). The strong convergence (4.42) also implies the Cauchy condition
(3.15) and that φ(ρτ )→ φ(ρ) strongly inC0(Q) for every continuous function φ : R→ R. We
can apply this fact to the functions g, g′, and π (see (3.8)). In particular, we infer that µτg′(ρτ )
has some weak limit in L∞(0, T ;L6(Ω)): thus, we can identify it with the help of (4.36) and
conclude that (3.14) holds. Now, we prove that µτ converges to µ a.e. in Q. To this aim, we
note that K−1

τ converges to K−1 uniformly on [0, R] for every R > 0. Hence, we see that
(4.43) implies µτ → K−1(k) a.e. in Q. By comparison with (4.36), we deduce that µτ → µ
a.e. in Q. Next, let us deal with the subproblem for µ. The identity K−1(k) = µ just proved
means that k = K(µ). From the convergence almost everywhere of µτ to µ we also infer that
ζτ converges to (1 + 2g(ρ))µ a.e. in Q, whence ζ = (1 + 2g(ρ))µ by comparing with (4.41).
The last term to be identified is the limit of ητ := µτg

′(ρτ )∂tρτ . Precisely, we prove that ητ
converges to η := µg′(ρ)∂tρ weakly in some Lp-type space. We observe that (4.36) and the
convergence almost everywhere of µτ imply that

µτ → µ strongly in Lp(0, T ;Lq(Ω)) for every p < +∞ and q < 6 (4.44)

as is well-known (via the Severini-Egorov theorem). By choosing, e.g., p = q = 4 and com-
bining with the weak star convergence of ∂tρτ in L∞(0, T ;H) (see (4.38)) and the uniform
convergence of g′(ρτ ), we deduce that ητ converges to η weakly in L4(0, T ;L4/3(Ω)), thus
weakly in L2(0, T ;L4/3(Ω)). At this point, it is straightforward to derive (3.24) in an integrated
form, namely∫ T

0

〈∂t
(
(1 + 2g(ρ))µ

)
(t), v(t)〉 dt−

∫
Q

µg′(ρ)∂tρ v +

∫
Q

∇K(µ) · ∇v = 0 (4.45)

for any v ∈ L2(0, T ;V ) ⊂ L2(0, T ;L4(Ω)), whence also the time-pointwise version (3.24) it-
self. Finally, (4.41) implies that ζτ → ζ strongly in C0([0, T ];V ∗), thus, ζτ (0)→ ζ(0) strongly
in V ∗, so that the Cauchy condition (3.25) is verified as well. This concludes the proof.

5 Further properties

In this section, we prove Theorems 3.7 and 3.8 and make some remarks on the regularity of
solutions. As far as the first result is concerned, we adapt the argument used in [8]. However, as
the first estimate of the proof has to be derived in a different way, we prepare a technical lemma.

Lemma 5.1. Assume

u ∈ H1(0, T ;V ∗) ∩ L∞(0, T ;H) and u+ ∈ H1(0, T ;H) ∩ L∞(0, T ;V ),

and let γ ∈ H1(0, T ;V ) ∩ L∞(0, T ;W ). Then, for every t ∈ [0, T ], we have that∫ t

0

〈∂tu(s), γ(s)u+(s)〉 ds =

∫
Qt

uγ∂tu
+. (5.1)
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Proof. As in Remark 3.4, u is a weakly continuous H-valued function and the pointwise values
of u and u+ make sense. We start from the formula∫ t

0

〈∂tu(s), v(s)〉 ds = 〈u(t), v(t)〉 − 〈u(0), v(0)〉 −
∫ t

0

〈u(s), ∂tv(s)〉 ds

=

∫
Ω

u(t)v(t)−
∫

Ω

u(0)v(0)−
∫
Qt

u ∂tv,

which holds if v ∈ H1(0, T ;V ). By an easy regularization, one sees that it still holds if v ∈
H1(0, T ;H) ∩ L2(0, T ;V ). Now, by applying our assumptions on u+ and γ and also owing
to the Sobolev inequality (3.28), we have

u+ ∈ L∞(0, T ;L4(Ω)), ∇u+ ∈ L2(Q), ∂tu
+ ∈ L2(Q)

γ ∈ L∞(Q), ∇γ ∈ L∞(0, T ;L4(Ω)), ∂tγ ∈ L2(0, T ;L4(Ω)). (5.2)

It follows that γu+ ∈ H1(0, T ;H) ∩ L2(0, T ;V ). Therefore, we obtain∫ t

0

〈∂tu(s), γ(s)u+(s)〉 ds

=

∫
Ω

u(t)γ(t)u+(t)−
∫

Ω

u(0)γ(0)u+(0)−
∫
Qt

u ∂t(γu
+)

=

∫
Ω

u(t)γ(t)u+(t)−
∫

Ω

u(0)γ(0)u+(0)−
∫
Qt

u+(u+∂tγ + γ∂tu
+)

=

∫
Ω

γ(t)|u+(t)|2 −
∫

Ω

γ(0)|u+(0)|2 −
∫
Qt

|u+|2∂tγ −
∫
Qt

γ∂t|u+|2 +

∫
Qt

u+γ∂tu
+

=

∫
Qt

uγ∂tu
+

for all t ∈ [0, T ], and the lemma is proved.

Proof of Theorem 3.7. Set µ∗0 := max {1, ‖u0‖∞}. In the proof performed in [8] the quan-
tity
∫

Ω
|(µ(t) − k)+|2 +

∫
Qt
|∇(µ − k)+|2 is estimated for any k ≥ µ∗0 by testing (3.18) by

(µ− k)+. In the present case, the equation to be tested is (3.24) instead of (3.18), and a more
elaborate procedure is needed. First of all, we check that (µ − k)+ is an admissible test func-
tion (this is not obvious since ∇µ might not exist in the usual sense). We recall that K is a
strictly increasing mapping from [0,+∞) onto itself and that K−1 is Lipschitz continuous on
the interval [s∗,+∞), where s∗ := K(r∗), due to (3.4). Therefore, we can choose a strictly
increasing map K∗ : [0,+∞) → [0,+∞) that is globally Lipschitz continuous and coincides
withK−1 on [s∗,+∞). Hence, we haveK∗(K(r)) = r for every r ≥ r∗ andK∗(K(r)) < r∗
for r < r∗. It follows that (r−k)+ = (K∗(K(r))−k)+ for every r ≥ 0 if k ≥ r∗. On the other
hand, K∗(K(µ)) ∈ H1(0, T ;H)∩L2(0, T ;V ) by (3.22). Hence, (µ− k)+ enjoys the same
regularity and is an admissible test function in (3.24) provided that k ≥ r∗. Thus, we assume
k ≥ max{µ∗0, r∗} from now on. We have from (3.24)∫ t

0

〈∂t
[
(1 + 2g(ρ))µ

]
(s), (µ(s)− k)+〉 ds+

∫
Qt

∇K(µ) · ∇(µ− k)+

=

∫
Qt

µ∂tg(ρ) (µ− k)+
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for every t ∈ [0, T ], and a simple rearrangement yields∫ t

0

〈∂t
[
(1 + 2g(ρ))(µ− k)

]
(s), (µ(s)− k)+〉 ds+

∫
Qt

∇K(µ) · ∇(µ− k)+

=

∫
Qt

∂tg(ρ) |(µ− k)+|2 − k
∫
Qt

∂tg(ρ) (µ− k)+. (5.3)

Now, noting that 1/(1+2g(ρ)) ∈ H1(0, T ;V )∩L∞(0, T ;W ) by (3.12) and our assumptions
on g (recall (3.6)–(3.8)), we apply Lemma 5.1 with u := (1 + 2g(ρ))(µ− k) and γ := 1/(1 +
2g(ρ)) and transform the first term on the left-hand side as follows:∫ t

0

〈∂t
[
(1 + 2g(ρ))(µ− k)

]
(s), (µ(s)− k)+〉 ds =

∫
Qt

(µ− k)∂t
[
(1 + 2g(ρ))(µ− k)+

]
=

∫
Qt

2∂tg(ρ) |(µ− k)+|2 +

∫
Qt

(µ− k)(1 + 2g(ρ)) ∂t(µ− k)+

=
1

2

∫
Qt

∂t
[
(1 + 2g(ρ))|(µ− k)+|2

]
+

∫
Qt

∂tg(ρ) |(µ− k)+|2.

On the other hand, we have a.e. in the set where µ ≥ k

∇(µ− k)+ = ∇µ = ∇K−1(K(µ)) = (K−1)′(K(µ))∇K(µ) =
1

κ(µ)
∇K(µ).

Finally, (µ(0)− k)+ = 0 since k ≥ µ∗0. Therefore, (5.3) becomes

1

2

∫
Ω

(1 + 2g(ρ(t)))|(µ(t)− k)+|2 +

∫
Qt

κ(µ)|∇(µ− k)+|2 = −k
∫
Qt

∂tg(ρ) (µ− k)+.

Since g is nonnegative and κ(r) ≥ κ∗ for r ≥ k (because k ≥ κ∗), we obtain

1

2

∫
Ω

|(µ(t)− k)+|2 + κ∗

∫
Qt

|∇(µ− k)+|2 ≤ k

∫
Qt

|∂tg(ρ)| (µ− k)+.

At this point, the argument used in [8] can be repeated without changes, essentially. Indeed,
the analog of (3.14) is never used there, and the whole proof is based just on the regularity
∂tρ ∈ L∞(0, T ;H)∩L2(0, T ;V ). In the present case, we have to exploit the same regularity
for ∂tg(ρ) which follows from (3.12). �

Remark 5.2. As observed in Remark 3.4, the component µ of any weak solution is a
weakly continuous H-valued function. We show that

µ ∈ C0([0, T ];Lp(Ω)) for p ∈ [1, 2), and for p ∈ [1,+∞) if µ0 ∈ L∞(Ω). (5.4)

Assume tn → t ∈ [0, T ]. We prove that µ(tn) → µ(t) strongly in Lp(Ω) for p like
in (5.4). In fact, µ(tn) is bounded in L2(Ω) in the general case, and in L∞(Ω) if µ0 is
bounded (thanks to Theorem 3.7). So, the desired convergence is proved once we show
that µ(tn) → µ(t) a.e. in Ω, at least for a subsequence. We observe that (3.22) implies
K(µ) ∈ C0([0, T ];H). Hence, K(µ(tn)) → K(µ) a.e. in Ω, at least for a subsequence.
As K−1 is continuous, the claim follows.
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Proof of Theorem 3.8. As (3.26) holds, g(ρ) is continuous and g′(ρ) is bounded. On the other
hand, µ is bounded too (by Theorem 3.7 since µ0 is bounded). Hence, (3.18) can be seen as
a linear uniformly parabolic equation for µ with continuous coefficients and a right-hand side
belonging to L∞(0, T ;H). We have indeed

∂tµ−
(
1 + 2g(ρ)

)−1
∆µ = −

(
1 + 2g(ρ)

)−1
µ g′(ρ) ∂tρ.

By owing to µ0 ∈ W and optimal Lp-Lq-regularity results (see, e.g., [13, Thm. 2.3]), we infer
that (3.27) holds. �

Remark 5.3. We notice that the same result (3.27) holds under an assumption on µ0 that is
weaker than µ0 ∈ W . The optimal condition involves a proper Besov space and can give
a similar result for a fixed p. We are going to use (3.27) just with p = 4 in our proof of the
uniqueness of the solution. It follows that uniqueness still holds for a less regular µ0.

Remark 5.4. We observe that the case corresponding to an empty interior of D(β) is
completely trivial. Indeed, ifD(β) = {r0}, then ρ takes the constant value r0, µ solves the
corresponding heat equation, and ξ is computed from (3.14). In the opposite case, further
regularity can be proved under suitable assumptions on the initial data. For instance, by
supposing µ0 to be bounded and nonnegative, we note that (3.14) yields

∂tρ−∆ρ+ ξ = µg′(ρ)− π(ρ) ∈ L∞(Q).

So, by assuming that inf ρ0 and sup ρ0 belong to the interior of D(β), one can easily
derive that ξ ∈ L∞(Q). Indeed, one can formally multiply by |ξ|p−1 sign ξ and estimate
‖ξ‖p uniformly with respect to p if this assumption on ρ0 is satisfied. This implies that
ρ ∈ W 1,p(0, T ;Lp(Ω)) ∩ Lp(0, T ;W 2,p(Ω)) for every p < +∞ whenever ρ0 is smooth
enough. However, no further regularity can be proved, in general, since (3.14) cannot be
differentiated, unless β is particular, e.g., like in [8]. By the way, in that case, the condition
ξ ∈ L∞(Q) is equivalent to inf ρ > 0 and sup ρ < 1. More generally, if D(β) is an open
interval (a, b) and β is a smooth function, then ξ = β(ρ) ∈ L∞(Q) implies that inf ρ > a
and sup ρ < b and a bootstrap technique using both equations can lead to higher regularity.

6 Uniqueness

In this section, we prove Theorem 3.9. We observe that the uniqueness of the third component
ξ follows by comparison in (3.14) once we prove that the pair (µ, ρ) is unique. So, we deal
with the first two components, only, and remind the reader that we can use the further regularity
given by Theorem 3.8. In particular, by accounting also for (3.12) and (3.28), we have

|∇µ| ∈ L4(0, T ;L6(Ω)) and |∇ρ| ∈ L4(0, T ;L6(Ω)) (6.1)

for every solution. First of all, we rewrite equation (3.18) in the form

∂t
(
µ/α(ρ)

)
− α(ρ)∆µ = 0, (6.2)
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where the function α : [0,+∞)→ (0,+∞) is defined by

α(r) :=
(
1 + 2g(r)

)−1/2
for r ≥ 0. (6.3)

More precisely, we consider the variational formulation of (6.2) that accounts for the homoge-
neous Neumann boundary condition and involves a related unknown function, namely

z :=
µ

α(ρ)
and

∫
Ω

∂tz(t) v +

∫
Ω

∇
(
α(ρ(t)) z(t)

)
· ∇
(
α(ρ(t))v

)
= 0

for a.a. t ∈ (0, T ) and for every v ∈ V . (6.4)

Notice that z is bounded since both µ and ρ are. Indeed, (3.26) holds and Theorem 3.7 can be
applied since W ⊂ L∞(Ω). Moreover, z satisfies the analogue of (6.1). At this point, we pick
two solutions (µi, ρi, ξi), i = 1, 2, and set

ai := α(ρi) and zi := µi/ai for i = 1, 2

so that (zi, ρi) satisfy (6.4). In the subsequent estimates the (varying) value of the constant c
may even depend on the considered solutions, e.g., through ‖zi‖∞. Our method proceeds as
follows. We write (6.4) for both solutions and choose v = z1 − z2 in the difference. Then we
integrate over (0, t), where t ∈ (0, T ) is arbitrary. At the same time, we write (3.14) for both
solutions and multiply the difference by ρ1 − ρ2. Then we integrate over Qt. Finally, we take a
suitable linear combination of the resulting equalities and perform a number of estimates that
lead us to apply the Gronwall lemma. However, in order to simplify notation and make the proof
more readable, we set

µ := µ1 − µ2, ρ := ρ1 − ρ2, ξ := ξ1 − ξ2, z := z1 − z2, and a := a1 − a2,

and prepare some auxiliary material before starting. The next inequalities account for the bound-
edness and the Lipschitz continuity ofα,α′, and 1/α on the range of ρ (recall that ρ is bounded).
We have

|a| = |α(ρ1)− α(ρ2)| ≤ c|ρ|,
|∇a| = |α′(ρ1)∇ρ+

(
α′(ρ1)− α′(ρ2)

)
∇ρ2| ≤ c|∇ρ|+ c|∇ρ2| |ρ|,

|∇a−1
i | ≤ c|∇ρi|,

|µ| ≤ |a| |z2|+ a2|z| ≤ c|a|+ c|z| ≤ c|ρ|+ c|z|,
|∇z| = |∇

(
a−1

1 (a1z)
)
| ≤ c|∇(a1z)|+ c|∇ρ1| |z|.

In what follows, we will repeatedly use these inequalities without reminding the reader.

Lemma 6.1. We have, for every t ∈ [0, T ],∫
Qt

|∇z|2 ≤ c

∫
Qt

|∇(a1z)|2 + c

∫ t

0

(
1 + ‖∇ρ1(s)‖4

6

)
‖z(s)‖2

2 ds. (6.5)
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Proof. By the preliminary inequalities just stated, we have∫
Qt

|∇z|2 ≤ c

∫
Qt

|∇(a1z)|2 + c

∫
Qt

|∇ρ1|2 |z|2. (6.6)

Now, by using the Hölder and Sobolev inequalities (see (3.28)), we obtain∫
Qt

|∇ρ1|2 |z|2 ≤
∫ t

0

‖∇ρ1(s)‖2
6 ‖z(s)‖6 ‖z(s)‖2 ds

≤ c

∫ t

0

‖∇ρ1(s)‖2
6

(
‖∇z(s)‖2 + ‖z(s)‖2

)
‖z(s)‖2 ds

≤ c

∫ t

0

‖∇ρ1(s)‖2
6 ‖z(s)‖2

2 ds

+ ε

∫
Qt

|∇z|2 + cε

∫ t

0

‖∇ρ1(s)‖4
6 ‖z(s)‖2

2 ds

≤ ε

∫
Qt

|∇z|2 + cε

∫ t

0

(
1 + ‖∇ρ1(s)‖4

6

)
‖z(s)‖2

2 ds,

where ε > 0 is arbitrary. Hence, (6.5) follows by combining this with (6.6) and then choosing ε
small enough.

Lemma 6.2. Let k ∈ L4(0, T ;L6(Ω)). Then we have∫
Qt

k2(|z|2 + |ρ|2) ≤ ε

∫
Qt

(
|∇(a1z)|2 + |∇ρ|2

)
+ cε

∫ t

0

(
1 + ‖∇ρ1(s)‖4

6 + ‖k(s)‖4
6

)(
‖z(s)‖2

2 + ‖ρ(s)‖2
2

)
ds (6.7)

for every ε > 0 and every t ∈ [0, T ].

Proof. By the Hölder and Sobolev inequalities (see (3.28)), we have∫
Qt

k2(|z|2 + |ρ|2) ≤
∫ t

0

‖k(s)‖2
6

(
‖z(s)‖6 ‖z(s)‖2 + ‖ρ(s)‖6 ‖ρ(s)‖2

)
ds

≤ c

∫ t

0

‖k(s)‖2
6

(
‖∇z(s)‖2 ‖z(s)‖2 + ‖z(s)‖2

2 + ‖∇ρ(s)‖2 ‖ρ(s)‖2 + ‖ρ(s)‖2
2

)
ds

≤ ε

∫ t

0

(
‖∇z(s)‖2

2 + ‖∇ρ(s)‖2
2

)
ds

+cε

∫ t

0

(
‖k(s)‖4

6 + ‖k(s)‖2
6

)(
‖z(s)‖2

2 + ‖ρ(s)‖2
2

)
ds.

By applying Lemma 6.1 and denoting the constant that appears in (6.5) by C , we can continue
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and obtain∫
Qt

k2(|z|2 + |ρ|2)

≤ ε

(
C

∫
Qt

|∇(a1z)|2 + C

∫ t

0

(
1 + ‖∇ρ1(s)‖4

6

)
‖z(s)‖2

2 ds+

∫
Qt

|∇ρ|2
)

+ cε

∫ t

0

(
1 + ‖k(s)‖4

6

)(
‖z(s)‖2

2 + ‖ρ(s)‖2
2

)
ds.

Hence, (6.7) immediately follows.

At this point, we can start with our program. However, in order to make the argument more
transparent, we deal with the first equation only, for a while. We have

1

2

∫
Ω

|z(t)|2 +

∫
Qt

(
∇(a1z1) · ∇(a1z)−∇(a2z2) · ∇(a2z)

)
= 0.

It is convenient to transform the last integrand as follows:

∇(a1z1) · ∇(a1z)−∇(a2z2) · ∇(a2z)

= |∇(a1z)|2 +∇(a1z2) · ∇(a1z)−∇(a2z2) · ∇(a1z) +∇(a2z2) · ∇(az)

= |∇(a1z)|2 +∇(az2) · ∇(a1z) +∇µ2 · ∇(az).

Then, the above equality becomes

1

2

∫
Ω

|z(t)|2 +

∫
Qt

|∇(a1z)|2 = −
∫
Qt

∇(az2) · ∇(a1z)−
∫
Qt

∇µ2 · ∇(az), (6.8)

and we estimate each term of the right-hand side separately. We immediately have

−
∫
Qt

∇(az2) · ∇(a1z) ≤ 1

4

∫
Qt

|∇(a1z)|2 + 2

∫
Qt

(
z2

2 |∇a|2 + a2|∇z2|2
)

≤ 1

4

∫
Qt

|∇(a1z)|2 + c

∫
Qt

(
|∇ρ|2 + |∇ρ2|2 |ρ|2

)
+ c

∫
Qt

|∇z2|2 |ρ|2

≤ 1

4

∫
Qt

|∇(a1z)|2 + C1

∫
Qt

|∇ρ|2 + c

∫
Qt

(
|∇ρ2|2 + |∇z2|2

)
|ρ|2, (6.9)

where we have marked the constant that we want to refer to by terming it C1. We treat the last
term of (6.8) as follows:

−
∫
Qt

∇µ2 · ∇(az) ≤
∫
Qt

|∇µ2|
(
|a| |∇z|+ |z| |∇a|

)
≤ c

∫
Qt

|∇µ2|
(
|∇(a1z)| |ρ|+ |z| |∇ρ1| |ρ|+ |z| |∇ρ|+ |z| |∇ρ2| |ρ|

)
≤ 1

4

∫
Qt

|∇(a1z)|2 + c

∫
Qt

|∇µ2|2 |ρ|2 +

∫
Qt

|∇ρ|2

+ c

∫
Qt

|∇µ2|2 |z|2 + c

∫
Qt

(
|∇ρ1|2 + |∇ρ2|2

)
|ρ|2. (6.10)
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Now, we deal with the second equation. Testing the difference of (3.14) by ρ as mentioned at
the beginning, easily yields

1

2

∫
Ω

|ρ(t)|2 +

∫
Qt

|∇ρ|2 +

∫
Qt

ξρ =

∫
Qt

(
µ1g

′(ρ1)−µ2g
′(ρ2)−π(ρ1) +π(ρ2)

)
ρ . (6.11)

We note that the last integral on the left-hand side of (6.11) is nonnegative by monotonicity,
while the integrand on the right-hand side can be estimated as follows:(

µ1g
′(ρ1)− µ2g

′(ρ2)− π(ρ1) + π(ρ2)
)
ρ

≤
(
|µ| |g′(ρ1)|+ |µ2| |g′(ρ1)− g′(ρ2)|+ |π(ρ1)− π(ρ2)|

)
|ρ|

≤ |g′(ρ1)| |µ| |ρ|+ c|µ2| |ρ|2 + c|ρ|2 ≤ c
(
|µ|2 + |ρ|2

)
≤ c
(
|z|2 + |ρ|2

)
.

Thus, by inspecting the coefficients of the integral
∫
Qt
|∇ρ|2 that appear on the right-hand sides

of (6.9) and (6.10), it is clear that it is convenient to multiply (6.11) by C1 + 2 before adding it
to (6.8). Once such a care is taken, it is straightforward to deduce that∫

Ω

|z(t)|2 +

∫
Qt

|∇(a1z)|2 +

∫
Ω

|ρ(t)|2 +

∫
Qt

|∇ρ|2

≤ c

∫
Qt

(
|∇µ2|2 + 1

)
|z|2 + c

∫
Qt

(
|∇µ2|2 + |∇ρ1|2 + |∇ρ2|2 + |∇z2|2 + 1

)
|ρ|2

≤ c

∫
Qt

(
|∇µ2|+ |∇ρ1|+ |∇ρ2|+ |∇z2|+ 1

)2 (|z|2 + |ρ|2
)
.

At this point, we recall that (6.1) hold for µi, ρi, and zi, so that we can apply Lemma 6.2 with
k = |∇µ2|+ |∇ρ1|+ |∇ρ2|+ |∇z2|+ 1. Then, we choose ε > 0 small enough and use the
Gronwall lemma. We conclude that z = 0 and ρ = 0, whence (µ1, ρ1) = (µ2, ρ2) follows.
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