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Simulations of an ASA flow crystallizer with a coupled
stochastic-deterministic approach
Clemens Bartsch,Volker John, Robert I. A. Patterson

Abstract

A coupled solver for population balance systems is presented, where the flow, temperature,
and concentration equations are solved with finite element methods, and the particle size distribu-
tion is simulated with a stochastic simulation algorithm, a so-called kinetic Monte-Carlo method.
This novel approach is applied for the simulation of an axisymmetric model of a tubular flow crys-
tallizer. The numerical results are compared with experimental data.

1 Introduction

A flow crystallizer consists mainly of a long, thin tube that is usually coiled up for practical reasons. A
three-component dispersion is pumped into the tube at the inlet. The dispersion contains a solvent, a
solute, and seed crystals, which consist of the same material as the solute. It is warm and highly satu-
rated. While the dispersion flows through the tube, mechanisms that result in a change of crystal size
are excited, like nucleation, surface attachment growth, particle collision growth or particle breakage.
The occurrence and intensity of these processes are controlled by several parameters. Among these
are the fluid composition, the fluid velocity, the shape and makeup of the tube, and the surrounding
temperature. At the outlet, product crystals with properties different from the input crystals can be
collected.

Flow crystallizers are a promising technology in pharmaceutical production. They allow for a regular
particle growth that can be accurately controlled. Regular shape and size are desirable properties
of crystals that are used in medicines, as more accurate crystal morphology influences medicinal
effects. From a technical point of view, flow crystallizers are interesting for two more reasons. Firstly,
they can be operated continuously. Secondly, knowledge transfer from the laboratory to the industry
is relatively easy. Wherever fluids are involved, there are big differences between different scales,
and so a typical development issue would be that a system behaves totally different at small scale
(laboratory) and big scale (industry). This problem of scale-up does not apply to flow crystallizers:
scaling up to the industrial measure does not mean bigger or longer tubes, it means more tubes,
operated simultaneously. Thus, the conditions in the individual tube stay the same in experiment and
application.

In a flow crystallizer, surface growth is largely responsible for the size gain of the crystals. A flow
crystallizer is operated often at laminar conditions, the flow field trajectories are aligned and parti-
cle collisions happen less frequently, surface growth dominates. This effect is often desired, and it is
boosted by cooling the flow crystallizer. As the temperature drops, so does the solubility of the ma-
terial of the crystals. Supersaturation of the surrounding solution increases, and the need to reduce
supersaturation is the driving force behind surface attachment growth. One must confine the above
statement to tube crystallizers operated at low velocity and smooth curvature. As soon as either veloc-
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ity or curvature hit a critical number, secondary flow structures (Dean vortices) begin to develop and
particle coagulation becomes more likely.

Collision growth can be an obstacle to the operation of a tube crystallizer, as can “excessive primary
nucleation” [10, p. 2249]. Both can easily lead to blockage of the typically very thin tube. A second
issue is the goal to achieve a sharp size distribution of the product crystals. Collision growth runs
contrary to this aim, because each collision event results in a sudden jump of the size of the involved
crystals. Surface growth is much smoother in that sense, and therefore it is the preferable growth
mechanism.

Numerical simulations have become an indispensable tool for the prediction and control of many pro-
cesses in chemical engineering. The main purpose of this paper consists in presenting a novel coupled
approach which solves equations for the flow, temperature, and concentration in a deterministic way,
and the equation for the crystals with a stochastic method. Since in this paper a proof of concept for
this approach is provided, the considered application was chosen such that it was possible to con-
centrate on the main new aspect of the method: the coupling of the deterministic CFD part and the
stochastic particle solver.

The flow crystallizer that is in the focus of this paper was set up and operated by the group of Prof.
Khinast at TU Graz. The crystalline model substance was acetylsalicylic acid (ASA), commonly known
by its brand name aspirin. The solvent was almost pure ethanol (EtOH). Results were first reported in
[10]. Modified setups were presented later in [9] and [11]. The first of these works contains a 1d ODE
model of the experiment, and computational results that were gained with it. The work [5] contains
a model and simulations for the setup in [11]. Recently, the method was applied to crystallization
growth of the enzyme lysozyme in [31]. In [10], the authors found four different parameter setups for
which they could operate the crystallizer up to fifteen minutes without blockage, maintaining almost
steady-state conditions at the outlet.

The crystallization process in the flow crystallizer is modeled with a population balance system (PBS)
consisting of equations for the flow, the temperature, the dissolved ASA, and a population balance
equation (PBE) for the crystalline ASA. In this paper, the situation of a long straight tube is considered,
which enables the derivation and use of a 2d axisymmetric model. For the sake of concentration to the
main novel aspect of the method, only one internal coordinate (property coordinate) for the particle
population is considered, although the stochastic particle method is designed for the simulation of
complex particles. The restriction to one internal coordinate has the further advantage that the example
can serve for comparison with other numerical methods, which is one of our future plans.

There is a rich literature on numerical methods for PBSs. A main difficulty comes from the fact that
the PBE is defined in a higher dimensional domain than the other equations because of the inter-
nal coordinates. In the case of one and even two internal coordinates, direct methods for the higher
dimensional equations have been applied, e.g., in [7, 22]. A popular alternative are moment-based
schemes like the quadrature method of moment (QMOM) and variants of this method [28, 30].

A main limitation of the approaches mentioned so far is, in our opinion, that they assume from the mod-
eling point of view that the aggregate of two particles is a particle of the same type whose properties
are the sum of the properties of the two individual particles. Thus, often spherical particles are as-
sumed and one internal coordinate is mass (or volume). However, models with two and more additive
internal coordinates are quite rare in the literature.

In this paper, an approach is used for the simulation of the particle behavior that is suited inherently for
complex particles, namely a stochastic simulation algorithm (SSA). SSAs in their many recent forms
are the result of more than forty years of combined research effort. They have been improved and
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Table 1: List of abbreviations.

ASA – acetylsalicylic acid
CFD – computational fluid dynamics
PBE – population balance equation
PBS – population balance system
PSD – particle size distribution
SPS – stochastic particle simulation
SSA – stochastic simulation algorithm

extended by different research groups on different occasions, and with different scopes of application
in mind. They have been developed further within different communities, and different names were
coined for them, among them “Kinetic Monte Carlo”, “Dynamic Monte Carlo”, “Direct Simulation Monte
Carlo”, “Population Balance Monte Carlo”, or “Gillespie SSA”. The last of these names gives credit
to [17], where an SSA was introduced as a tool for the simulation of reactive chemical systems. The
simulation algorithm used in this paper is closely based on that presented in [35] and various refine-
ments are available for particular steps, see for example [24, 33]. It is based on a splitting between
growth/coagulation and transport processes analogous to the splitting between elastic collisions and
free streaming in the Bird algorithm for the Boltzmann equation [6]. The crystallizer is partitioned into
cells and the physical particle population within each cell is approximated by an ensemble of computa-
tional particles. This approximation is ultimately justified by mathematical convergence proofs [34], but
heuristically one may identify the computational particles with the physical particles in a small fraction
of each cell in the spatial partition. In particular, the simulation dynamics can be expressed almost
directly as a physical model for the behavior of individual particles. This particle approach lies behind
the power and flexibility of the algorithm. Because one only ever has to deal with pairs of individual
particles, high-dimensional integrals that arise when particles have many internal degrees of freedom
can be avoided and reduced to sums over a list of particles. The SSA has therefore been used for very
sophisticated particle models [38, 42] as well as in less complex settings [12, 18, 23].

The paper is organized as follows. In Section 2, the axisymmetric model of the tubular flow crystallizer
and experimental results are described. The stochastic model of the growth processes is explained in
Section 3. Section 4 describes the individual components of the coupled numerical method and the
coupling strategy. Numerical studies are presented in Section 5. Finally, Section 6 provides a summary
and gives an outlook.

2 The Model of an ASA Crystallizer

In this section, we will present a model of a flow crystallizer for aspirin. It is two-dimensional in space,
a simplification which is achieved by assuming axisymmetry. First, we will describe the experiment
to be modeled and simulated. Then, we list several general modeling assumptions, which include
considerations on the fluid density, the axisymmetric geometry, and the particle model. In the following,
we are going to use the terms particles and crystals interchangeably. The first term (“particles”) is
closer to the mathematical model, the second term (“crystals”) more related to the actual physical
system.
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2.1 The Experiment

In the experimental setup, as described in [10], the crystallization takes place in a 15 m long polysilox-
ane tube that is coiled up in a box of dimensions 0.41 m × 0.24 m × 0.26 m. The inner diameter
of the tube is 2 mm and the outer diameter is 4 mm, i.e., the tube has a wall thickness of 1 mm.
The fluid in the crystallizer is a mixture that is fed from two vessels. The first vessel contains a warm
solution of ASA in ethanol, close to supersaturation. The second one contains a well-mixed ASA seed
crystal suspension, consisting of ethanol, dissolved ASA and undissolved ASA in crystallized form.
One peristaltic pump per vessel pumps the contents into a Y-fitting (“mixing zone”). and from there
the mixture flows into the tube crystallizer. The temperature in the box that contains the tube is held
at 24.3 ± 1 °C, which is cool compared to the temperature of the fluid at the inlet, see Table 2. The
cooling results in a drop of supersaturation and thus in crystal surface growth. At inlet and outlet of the
crystallizer, a microscope and a specialized camera have been installed, which allowed to gather data
on the in- and outflowing crystals. An approximation of the crystal size distribution at in- and outflow
could be determined from this data. In [10], four configurations were figured out to steadily operate the
flow crystallizer, meeting several requirements at once:

� Comparing inflowing and outflowing crystals, the peak of the crystal size distribution should
move significantly towards larger particles, i.e., significant surface growth should take place
within the device.

� The peak of the product crystal size distribution should be sharp, i.e., the particles at the outlet
should be rather evenly sized.

� The tube should not be blocked due to excessive crystal growth.

� Finally, as much crystalline material as possible, given the other requirements, should be pro-
duced within a certain operating time.

It is our goal to computationally reproduce the experimental results for all four parameter sets. The
target variables of the simulation are the mean d̄ and standard deviation σ of the particle diameter at
the outlet. There are several constraints that we will also use for the validation and verification of our
computational results. These are:

� Mean and standard deviation of the crystal diameter at the inlet.

� Mass flow rate of crystalline ASA at the outlet.

� The conservation of the mass flux throughout the tube.

These target quantities of the experiments are also listed in Table 2. We use superscript [i] with
i ∈ {1, ..., 4} for the distinction of the data. Often, when some general statement holds for all four
setups, we skip the superscript.

2.2 Some Modeling Assumptions

The particles represent ASA crystals of different sizes. We regard the entire computational domain to
be continuously filled with homogeneous matter. Its suspension character and its microscopic features
are ignored at first. The particles then get re-introduced as zero-dimensional objects, which interact
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Table 2: Top: Target data at the inlet. Crystal mass flow rateQin, crystal mass flux ṁin, particle number
mean diameter d̄in, particle diameter standard deviation σin, suspension temperature Tin. Bottom:
Target data at the outlet. First number refers to the end time of the experiment (15, 11, 9, 9 minutes),
number in parentheses to an intermediate time (9, 7, 6, 5 minutes).

Quantity Qin [m3/s] ṁin [kg/s] d̄in [µm] σin [µm] Tin [K]
Setup 1 1.9e-7 0.0156 90 38 307.6
Setup 2 2.9e-7 0.0258 81 26 312.9
Setup 3 3.8e-7 0.0324 91 27 313.1
Setup 4 4.2e-7 0.0378 85 29 313.7

Quantity ṁout [kg/s] d̄out [µm] σout [µm] Tout [K]
Setup 1 0.0888 243 (233) 65 (62) 297.5
Setup 2 0.1512 214 (215) 50 (43) 297.5
Setup 3 0.1932 192 (183) 49 (41) 297.5
Setup 4 0.195 166 (186) 44 (45) 297.5

with the fluid only via a macroscopic observable, their particle size distribution (PSD). This approach
comprises several assumptions on the particles: from the fluid point of view, the particles have a po-
sition but no extension. They are described by the PSD, which is a cumulated quantity. Additionally,
the particles are assumed to follow the streamlines of the macroscopic velocity field and do not back-
couple on the velocity field. As for the internal coordinates, we use a one-dimensional model: particle
mass m is the internal coordinate.

In order to stay in the framework of incompressible fluids with non-varying density, the density ρsusp =
916.87 kg/m3 of the fluid is kept constant, see [4] for a detailed derivation of this value. The assumption
of constant density means that surface growth, i.e., phase transition of ASA from dissolved to solid
form, does not influence the density. Both phases are assumed to contribute to the overall density in
the same way.

The computations will comprise only the 15 m long main portion of the tube, excluding the vessels, the
Y-fitting and the mixing zone of the device. Also, the computational domain spans only the inner part
of the tube, that part where the fluid flows. The tube wall is not part of the computational domain. This
approach requires some assumptions on the boundary conditions for the energy balance equation,
see below in this section. The geometry of the tube interior is simplified. The originally coiled up tube
is straightened out, and an axisymmetric 2d approach is pursued. The meridian modeling domain is
depicted in Figure 1. Here, Λ is the 2d coupling domain, while Ω will denote the three-dimensional
cylinder which is gained by rotation of Λ. The boundaries of Λ are in- and outflow boundary Γin and
Γout. The wall boundary is Γwall and Γsymm is the symmetry boundary in the center of the tube. As for
the cylindrical variables, z ∈ [0, 15] is the axial variable and r ∈ [0, 0.001] is the radial variable,
compare Figure 1.

2.3 The Population Balance System

The Reynolds and Dean numbers of the flows are given in Table 3, for their derivation the reader is
referred to [4]. All numbers are small enough to expect a laminar flow without secondary vortices. A
laminar flow in a tube or pipe develops a parabolic velocity profile. For this well-understood case, the
analytic solution to the Navier–Stokes equations is given by the law of Hagen–Poiseuille. Note that in
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Figure 1: The modeling domain (symbolic), with denotations of the boundary pieces and the coordi-
nates. The dashed line is the symmetry axis.

Table 3: Key figures of the flow, for the four different parameter setups. Total mass flow was calculated
based on volumetric flow rate data in [10] and the density ρsusp = 916.87 kg/m3.

Quantity Total mass flow [kg/s] Mean vel. [m/s] Reynolds no. Dean no.
Setup 1 0.000174 0.0605 11.1 1
Setup 2 0.000263 0.0912 16.7 1.5
Setup 3 0.000348 0.1209 22.2 2
Setup 4 0.000385 0.1337 24.5 2.2

an axisymmetric setup, this leads to a vanishing radial component of the flow, ur = 0. Backcoupling
from the particles, concentration or temperature is not contained in the flow model. The same approach
was pursued, e.g., in [2, 19].

The population balance equation (PBE) for the one-dimensional particle model with internal coordinate
m [kg] has the form

∂

∂t
f + u · ∇f = C(f) + G(c, T, f) in (0, tend)× Ω× [0,∞), (1)

where the sought function f [1/m3kg] is the particle number density. In (1), u [m/s] denotes the velocity
field, C(f) the coagulation term, and G(c, T, f) the growth term. A stochastic particle scheme will be
utilized for computing the right-hand side of (1). The corresponding Markov jump process formulation
will be described in Section 4.3. The end time tend depends on the experimental setup.

The way how particles entering the flow domain are inserted into the simulation is described in detail
in Section 4.3.

It is not necessary to formulate wall and symmetry axis boundary conditions at Γwall and Γsymm, since
ur = 0 means that no wall or axis collisions happen. At the outflow boundary, particles are removed
from the computation when the transport step transports them to a point beyond Γout.

The coagulation term has the form

C(f, t,x,m) =
1

2

∫
Ωm

K(m− µ, µ)f(t,x,m− µ)f(t,x, µ) dµ

−
∫

Ωm

K(m,µ)f(t,x,m)f(t,x, µ) dµ,

where x [m] is the spatial coordinate and m [kg] is the internal coordinate. There are several options
for defining the coagulation kernel K . In our simulations, two “traditional” kernels were applied. The
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first one is the additive shear flow kernel, which is usually suitable for the laminar flow regime, see
[3]. In terms of particle mass, this coagulation kernel gives the probability that two “near” particles of
masses m1 and m2 coagulate in an infinitesimal time interval. It has the form

K(m1,m2) = κadd(m1 +m2) [1/s]. (2)

The scaling parameter κadd is unspecified so far. A second kernel is the (simpler) constant coagulation
kernel

K(m1,m2) = κconst [1/s]. (3)

The used stochastic particle method requires to model the growth rate in terms of particle surface
reaction rather than as convection along the internal coordinate. This modeling and a comparison of
both approaches are described in Section 3. Given a fixed mass growth increment µ [kg], the following
form of the growth term

G(c, T, f,m) =
G(c, T,m− µ)

µ
f(m− µ)− G(c, T,m)

µ
f(m)

is used, which is well suited to be treated with a stochastic particle algorithm. For G(·), we stick to
the semi-empirical model used in [5, 27]. It is based on the Arrhenius equation for the reaction speed
constant of temperature dependent reactions, but multiplied with a monomial supersaturation term. In
[27], the model is used for a diameter-based 1d particle description:

Gd(c, T ) = kG1 exp

(
−kG2

RT

)
(csat(T )− c)kG3 [m/s]. (4)

It is formulated in terms of absolute supersaturation. In (4), T [K] is the temperature, c [mol/m3] is the
concentration, csat [mol/m3] the supersaturation, and R = 8.314 J/kg·K is the ideal gas constant. The
parameters kG were experimentally determined, [27], to be

kG1 = 3.21 · 10−4 m/s, kG2 = 2.58 · 10−4 J/mol, kG3 = 1.

For our mass-based approach we have to reformulate Gd to Gm [kg/s], the mass growth speed.
Because the model assumes spherical particles, there is the following dependence of particle mass
on particle diameter: m = π

6
d3ρASA. Using the chain rule and Gd = d

dt
d, one computes

Gm(c, T,m) =
d

dt
m =

d

dd
m

d

dt
d =

π

2
d2ρASAGd(c, T ).

Setting AO(m) = πd(m)2, the surface area of a spherical ASA particle of mass m, one obtains

Gm(c, T,m) =
1

2
AO(m)ρASAGd(c, T ). (5)

This particle mass growth rate depends linearly on the particle surface area. Another modeling deci-
sion concerns the supersaturation csat(T ). We use here a fitted Nyvilt model, see [10],

csat(T ) = 1027.769+−2500.906
T

−8.323 log10(T ).

The concentration balance equation is modeled with a convection-diffusion equation. Its formulation
in Cartesian coordinates is

∂c

∂t
−D∆c+ u · ∇c = − 1

MASA
Igrowth(c, T, f) on Ω× [0, tend). (6)
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Table 4: Material constants of ASA and ethanol (at 20 °C) used in this paper.

Quantity MASA [kg/mol] MEtOH [kg/mol] ρASA [kg/m3] ρEtOH [kg/m3]
Value 0.18016 0.04607 1350 790

The unknown function c [mol/m3] describes the molar concentration of dissolved ASA. The diffusion
coefficient D [m2/s] is the diffusion coefficient of dissolved ASA in EtOH. As we are not aware of
an exact value in the literature, we use the diffusion coefficient of another model substance, urea
in ethanol, see [2]. Since any numerical stabilization for convection-diffusion equations introduces
numerical diffusion which exceeds the physical diffusion, it is only important to choose D such that its
order of magnitude is reasonable. We set D = 1.35 · 10−9 m2/s. The precomputed velocity is u [m/s],
and MASA [kg/mol] is the molar mass of ASA as given in Table 4.

On the right-hand side, the term Igrowth [kg/m3s] is the surface growth intensity of the ASA crystals,
which measures the intensity of particle surface growth. Using the model (4) of the growth term, the
growth intensity term takes the form

Igrowth(c, T, f, t,x) =

∫
Ωm

G(c, T,m)f(t,x,m) dm

=
ρASA

2

∫
[0,∞)

AO(m)kG1 exp

(
−kG2

RT

)
(csat(T )− c)

c
f(t,x,m) dm. (7)

The boundary conditions for the axisymmetric re-formulation of (7) are{
c = 1511.3 mol/m3 on Γin,
∂c
∂nΓ

= 0 on Γwall ∪ Γout ∪ Γsymm.

Interestingly, the boundary conditions at outflow, wall, and symmetry boundary are all the same, al-
though their interpretation differs. At Γwall, the condition describes impermeability, at the outflow Γout, it
is a natural outflow condition, and at the symmetry axis Γsymm, it is the necessary symmetry condition.
The derivation of the Dirichlet value at the inlet Γin from the experimental data is described in detail in
[4].

Finally, the equation is closed with an initial condition. We assume that there is no ASA present in the
crystallizer before the experiment starts, thus c(0, ·) = 0 mol/m3 in Ω.

The energy balance is modeled by the convection-diffusion equation formulation

∂T

∂t
+ u · ∇T − λEtOH

ρsuspCEtOH
=

∆hcryst

ρsuspCEtOH
Igrowth(c, T, f) on Ω× [0, tend). (8)

The sought quantity T [K] is the temperature. On the right-hand side appears again the growth inten-
sity Igrowth. The constants which scale the influence of the source term and the relation of diffusive and
convective transport are

λEtOH = 0.1676 W/m·K (thermal conductivity of ethanol),

CEtOH = 2441.3 J/kg·K (specific heat capacity of ethanol),

∆hcryst = 1.6541 · 105 J/kg (specific heat of crystallization).

Note that since no other assumptions from [10] are available (thermal conductivity and specific heat
capacity of the suspension), we used the values of the solvent instead. The constant ∆hcryst is the
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specific heat of fusion of ASA. In [10], we found the molar heat of fusion of ASA to be 29800 J/mol,
which is assumed to be the same as the molar heat of crystallization. Dividing by MASA, we get the
specific heat of ASA crystallization as given above.

Equation (8) has to be transformed into its 2d axisymmetric formulation. For that formulation, the
boundary conditions are 

T = T
[i]
feed on Γin,

∂T
∂nΓ

= 0 on Γout ∪ Γsymm,

T = T
[i]
wall on Γwall.

The Dirichlet value at the inflow, Tfeed, depends on the parameter set i. The respective values come
from measurements reported in [10] and they are given in Table 2. The Neumann conditions at outflow
and symmetry axis are the same conditions that were used for the concentration balance equation.
The wall boundary condition is special, since here we prescribed the heat loss through the tube wall
by imposing a temperature profile. This is a concession to excluding the tube wall from the modeling
domain.

The equation is closed with an initial condition. We assume that the entire tube finds itself at ambient
temperature before the hot suspension is pumped into it: T (0, ·) = 297.5 K in Ω.

3 Modeling of the Growth Term for the Stochastic Particle Method

For solving of the PBE (1), we want to apply the stochastic particle method that is presented in [35]. It
is based essentially on two sources: G.A. Bird’s direct simulation Monte–Carlo algorithm for the Boltz-
mann equation [6] and Gillespie’s stochastic algorithm for the simulation of collision growth phenomena
in clouds [14, 15]. While the Bird algorithm provides a way to deal with the convective transport part
(by splitting), the Gillespie algorithm gives a tool to treat the coagulation part of the equation (by formu-
lating a jump process). Particle growth, which is the third feature of the PBE (1), is included in neither
of these original sources, nor is it considered in [35]. Yet in [36], particle surface reaction is included in
model and simulation. The way it is done there is closely related to [16, 17], where a stochastic algo-
rithm similar to that introduced in [14] is applied to chemical reactions. Our aim is to simulate growth
as a stochastic jump process, and therefore we have to find an appropriate formulation. The key is
to understand particle growth as a particle surface reaction rather than as convective transport along
the internal coordinate axis. This section compares both approaches and establishes a link between
them.

Let, for the sake of simplicity, the particle number density function f : (0, tend) × Ωm → R+
0 only

depend on time t and the internal (mass) coordinate m, i.e., we assume spatial homogeneity. Further,
let particle growth by attachment be the only reason for f to change, thus disregarding coagulation.

First, let us sketch the derivation of a population balance equation under the concept of “particle growth
as transport along the internal coordinate axis”. This sketch follows the presentation in [37, p. 16]. The
main assumption is that for each m ∈ Ωm there exists a (time-independent) growth rate G(m) at
which any particle of mass m grows. Fix an arbitrary interval [a, b] ⊆ Ωm in the property space. The
particle number balance in the interval [a, b] is then given by

d

dt

∫ b

a

f(t,m) dm = G(a)f(t, a)−G(b)f(t, b).
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If one assumes smoothness of f and G, both the time derivative and the right-hand side can be
written under the integral. Because of the arbitrary choice of [a, b], the equation can be reduced to the
integrand, which gives the final PBE

∂

∂t
f(t,m) = − ∂

∂m
G(m)f(t,m). (9)

Assuming that G(m) ≡ const., and re-introducing the left-out features (convection, coagulation, de-
pendence on c and T ), one regains a PBE as used, e.g., in [2, 19]. As result, particle growth appears
as a transport term in this PBE.

In the second approach, which will allows for a more straightforward stochastic formulation, one starts
with regarding particle surface growth as a chemical reaction. Each particle type m ∈ Ωm acts as a
chemical species and f(t,m) can be interpreted as the “number concentrationöf the species at time
t. We stick to the assumption of spatial homogeneity here. One states that each “growth reaction” for
a particle means a mass gain of µ > 0. The growth reactions are of the form

m
rm−→ (m+ µ) ,

where rm is the rate at which this growth reaction takes place. A standard ODE description of this
reacting system gives for every m

∂

∂t
f(t,m) = rm−µf(t,m− µ)− rmf(t,m). (10)

The first term on the right-hand side stands for gain of m-type particles by growth of particles of size
m − µ, the second term for loss of m-type particles. Comparing (9) and (10) yields that in order to
link transport-based and reaction-based growth modeling, the relation

− ∂

∂m
G(m)f(t,m) ≈ rm−µf(t,m− µ)− rmf(t,m) (11)

must be satisfied in some sense. Abbreviating ϕ(t,m) := rmf(t,m) for all m ∈ Ωm, we observe

ϕ(t,m− µ)− ϕ(t,m) = −µϕ(t,m− µ)− ϕ(m)

−µ
= −µ

(
∂

∂m
ϕ(t,m) + o(µ)

)
,

if ϕ is smooth. Thus, up to first order,

rm−µf(t,m− µ)− rmf(t,m) = −µ ∂

∂m
(rmf(t,m))

holds, and one can interpret relation (11) in this way.

This leads to the following conclusion. If one wants both approaches to model the same physical
process from a macroscopic point of view, the identity G(m) = µrm must hold.

4 Numerical Methods

This section describes the numerical methods that were used to simulate the ASA flow crystallizer.
In particular, the algorithms for the stochastic particles are presented in some detail: the convective
transport of these particles and the Markov jump processes, which simulate their growth. At the end of
this section, the coupling strategy for the deterministic CFD solver and the stochastic particle solver,
as well as the steps for achieving an appropriate coupling are explained.
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4.1 Convection-Diffusion Equations

The concentration balance equation (6) and the energy balance equation (8) are of convection-
diffusion type. Since the diffusion parameters are very small, convection dominates. It is well known
that in this situation standard discretizations lead to numerical solutions that are globally polluted with
spurious oscillations. Instead, so-called stabilized discretizations have to be used.

For the physical fidelity of the computed results, the solutions obtained with a stabilized discretization
must not possess spurious oscillations at all. Competitive numerical studies in [20, 21] showed that
first, there are only very few stabilized finite element schemes which lead to oscillation-free solutions.
And second, the linear finite element method flux-corrected transport scheme with Crank–Nicolson
time discretization (linear CN-FEM-FCT), which is a special variant of a scheme proposed in [25], is
a good compromise between accuracy of the solutions and efficiency of the simulations. This scheme
was used in our simulations. For a detailed description, the reader is referred to [20, 21].

4.2 Spatial Inhomogeneity and Convective Transport of Stochastic Particles

Stochastic simulation algorithms have been extended recently to cover systems with spatial inhomo-
geneity, and especially convective transport by an external flow field, e.g., see [26, 35, 43]. For our
brief presentation of the key points, we stick to [35], though the main idea is the same in all cases. It
goes back to the Bird algorithm for the Boltzmann equation [6] and consists essentially in a splitting
scheme, splitting the particle transport (“free streaming”) and the particle interaction step. Consider a
constant splitting time ∆tsplit. In the original Boltzmann application, the interaction step meant comput-
ing particle collisions, where particles exchanged momentum. In our application, the interaction step
means computing particle coagulations and growth.

Some fundamental alterations must be conducted in order to adapt a standard SSA to spatial inho-
mogeneity. The particle state space is complemented by a bounded spatial domain Ω ⊂ Rd, d ∈
{1, 2, 3}, which must then be discretized into a finite number of physically sensible and computation-
ally feasible compartments Kj , j = 1, ...,M . In [35], this spatial domain is one-dimensional, and the
compartments are just equally spaced sub-intervals.

Each computational particle gets tagged with a spatial coordinate xi ∈ Ω. All particles which belong to
the same cellKj are regarded as one ensemble, and during the particle interaction step only particles
within the same ensemble may interact. The state of the entire process at time t is now

XSSA(t) =
⋃

j∈1,...,M

(mj
i ,x

j
i )i=1,...,Nj(t).

An external flow field u is responsible for the transport of particles. In the free streaming step, each
computational particle is moved as if following the trajectories of the numerical velocity field u

xji −→ xji + ∆tsplitu(xji ).

The transport step is performed for each particle, and a check must be performed, whether the re-
located particle does still belong to the same cell. If not, then the particle must be removed from its
current ensemble and inserted into the ensemble of the new cell.

The particle interaction step poses the difficulty that whenever two particles coagulate, the position of
the new particle must be determined, without unwanted side effects. An example for such side-effects
was noted in [35]. If inserting the new particle, e.g., at the midpoint in between the two former positions,
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the particles collect at the midpoint of the cell. To avoid this side-effect, in [35] it is proposed to choose
a new particle position y, of a particle which emerged from coagulation of the particles

(
mI ,xI

)
and(

mJ ,xJ
)

stochastically, distributed according to the elementary probabilities

P(y = xI) =
mI

mI +mJ

, P(y = xJ) =
mJ

mI +mJ

.

The necessary changes when combining stochastic weighting and spatial inhomogeneity are ad-
dressed also in [35].

4.3 Markov Jump Processes

The stochastic jump process in each cell will be described. Our presentation follows closely that one
in [36], see also [32] for an introduction to Markov jump processes. For the sake of simplicity, we give
the jump process in terms of the “direct simulation algorithm” described in [35, Sec. 2.1]. It has the
advantage to spare some stochastic subtleties of the actually used “stochastic weighted algorithm”
[35, Sec. 2.2].

Fix a spatial cell and the belonging particle ensemble, (K, E). Each particle in E is represented by a
spatial and an internal coordinate,

ei = (xi,mi),

with xi ∈ K ⊆ Ωx and mi ∈ Ωm. The entire ensemble, consisting of NE particles, is thus

E = (e1, ..., eNE ).

The state of the ensemble can change by particle growth jumps and by particle coagulation jumps.
Starting at some time t, the system persists in state E(t) for an exponentially distributed waiting time
τ ,

P (τ ≥ s) = exp(−λ(E)s).

The waiting time parameter λ(E) is the sum of the individual rates of all jumps that are possible in
E(t). Assembling these in a growth jump rate λgrow and a coagulation jump rate λcoag gives:

λ(E) = λgrow(E) + λcoag(E).

Particle growth jumps A particle growth jump by a fixed growth height µ changes the state of a
certain particle ei in E according to

ei = (xi,mi) −→ (xi,mi + µ) =: ẽi.

Growth jumps in E happen at the total rate

λgrow(E) =

NE∑
i=1

G(c, T,mi)

µ
.

The particle ei for which the next growth jump occurs is chosen with probability

G(c, T,mi)

µ
(λgrow(E))−1 .

In this expression, c and T are assumed to be constant (in space) within the cell K .
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Particle coagulation jumps Coagulation jumps affect two particles, denote them by ei and ej (with
i < j). A coagulation jump has the form

ei, ej −→ (ξ(xi,xj),mi +mj) =: ẽi

The particle ej is removed from the ensemble. The placement of the new particle ẽi can be done in
several ways. It is already mentioned in Section 4.2 that a numerically stable approach consists in
using the center of mass.

The total rate of coagulation jumps is the sum of all individual coagulation jump rates of particle pairs.
It is calculated as

λcoag(E) =
1

2NE

NE∑
i,j=1

K(mi,mj).

As in the particle growth case, the choice of two particles for a coagulation jump is made at random
with the probabilities

P (ei and ej chosen for coagulation) =
K(mi,mj)

2NE
.

With these definitions of jumps and jump rates, the stochastics of the process are well defined. Evi-
dently, correlations between particles are neglected.

Insertion of particles entering the flow domain At the inflow boundary Γin, particles are inserted
into the simulation domain, i.e., into the particle ensembles of those cells, which border the inlet bound-
ary. Particle inceptions are simulated as inception jumps, meaning that each ensemble E in contact to
Γin gets equipped with an additional jump rate λin(E) and a corresponding jump, which adds a new
particle to the ensemble. The inception jump rates are chosen such that in the very first layer of cells
a certain ASA crystal mass concentration is achieved on average. The jump rates, superscripted with
the respective parameter setup number, are

λ
[1]
incept = 395 · 106uz #particles/m2s, λ

[2]
incept = 661 · 106uz #particles/m2s,

λ
[3]
incept = 486 · 106uz #particles/m2s, λ

[4]
incept = 552 · 106uz #particles/m2s.

Note that the velocity component uz, which is orthogonal to the inception boundary, must be included
in the formulation of the inception jump rate here because the target particle concentration in a cell
is proportional to the velocity in that cell. The differences of the inception jump rates are due to the
different input particle size distributions, see Table 2. The position within a cell and the amount of
ASA of which a newly incepted particle consists must be determined stochastically. For details of this
process, see [4].

4.4 Coupled Simulation with a Splitting Scheme

For the numerical simulation, we used two in-house code bases: The finite element CFD package
PARMOON [13, 41] and the stochastic particle simulation code BRUSH [36]. Our goal was to combine
these two codes for the simulation of PBSs. To this end, an appropriate numerical scheme had to be
used and the necessary extensions to the software had to be developed and implemented.

A sketch of the numerical scheme for coupling the two codes is presented in Figure 2. In each discrete
time, the computation is split into two steps. First, the deterministic CFD equations are solved, thereby
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START

Compute velocity field

Interpolate data from SPS

Compute temperature and concentration

CFD

Transport for ∆t

Assign particles to cells

Perform jumps in each cell separately for ∆t

SPS

t← t + ∆t

t < tstop

END

Put interpolated fluid
data into SPS cells

No

Yes

Figure 2: Schematic sketch of the coupled simulation via a splitting scheme.

using the data from the stochastic particle simulation (SPS) from the previous time instance. Then, the
CFD data are interpolated via a custom C++ interface between PARMOON and BRUSH. As the second
main step of the splitting scheme, the behavior of the particles is simulated, using the algorithms
described above.

Besides the interface between the codes, major extensions of the basic codes included the interpola-
tion of the SPS data to be used in the CFD simulations, the simulation of the transport of the particles,
and their assignment to mesh cells, see [4] for details of the implementations.

5 2d Coupled Simulations of a Tubular Flow Crystallizer

The 2d axisymmetric computational domain was discretized regularly into 5 × 150 rectangles. This
grid is used for all parts of the simulation, i.e., it is at the same time the finite element mesh for u, c,
and T , and the grid of ensemble cells for the stochastic particle simulation (SPS).

The flow equations were discretized with inf-sup stable Q2/Q1 elements (Taylor–Hood) and for the
convection-diffusion equations Q1 elements (piecewise bilinear) were used. This meant a problem
size of 7528 d.o.f. for the flow equations and of 906 d.o.f for both convection-diffusion equations. They
were solved with the sparse direct solver UMFPACK [8]. Some performance profiling showed that
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the time spent in those solvers was sufficiently small such that investing further optimization effort
here was unnecessary. In the SPS, computing time was dominantly determined by the number of
computational particles per ensemble. We restricted the number of computational particles per cell
to 128, which proved to be a good compromise of computing time and accuracy. We also fixed the
maximal number concentration of ASA particles to 1.2 ·1011 1/m3. This meant that each computational
particle, upon insertion to the simulation domain, stood representative for 937.5 physical particles per
cubic centimeter. These numbers were kept constant in space and time, and were also the same for
all four parameter setups.

Information transfer between SPS and CFD was done with L2 projection operators. In fact, the Q2

velocity was projected to Q0 for both applications. The reason was that otherwise (projection to Q1

for the convection-diffusion equations, Q0 for the SPS), an unwanted numeric effect took place. Since
c and T get transported with that velocity which is found at the respective quadrature points, they
are transported with a different velocity than f , which is transported only by the Q0 velocity in the
ensemble cell. Such a lag between fluid quantities and particle transport resulted in the situation that
the conservation of mass flux in the tube was lost.

The chosen time step was ∆t = 0.025. With a coarser time step, the CFL-like condition of the CN-
FEM-FCT-scheme for the convection-diffusion equations was violated, and a finer time step did not
produce significantly better results, as several studies showed (not presented here for the sake of
brevity). The same time step was used for CFD and SPS, i.e., there was exactly one transport step
plus one process step per ∆t in the SPS.

The simulations were performed on widely available computing workstations (HP BL460c Gen9 2xXeon,
Fourteen-Core 2600MHz). We used eight cores per run, to make use of the inherent shared memory
parallelism in the SPS. One simulation run took between 20 and 45 minutes, depending on the param-
eter setup and the choice of the coagulation parameter.

We ran simulations for all four parameter sets. In all cases, the simulated time was the reported
operating time of the experimental tube crystallizer from [10] plus 100 seconds. Those additional 100 s
were the “recording time”, from which the results that are given in this section were computed.

For the SPS, we made use of the “linear process deferrement algorithm” (LPDA), that was proposed
in [33] and is implemented in BRUSH. Instead of recomputing jump rates and updating particle prop-
erties after each occurrence of a “ linear” process (surface growth), the updates are deferred until
the occurrence of a coagulation event and then performed all at once. Due to the relative rareness of
coagulation events compared to growth events, this led to five to ten times faster computations in our
setup.

An opportunity for speeding up the computations offered itself in caching data that was necessary for
transferring functions between the two simulation platforms. We can re-use the geometric multigrid
implementation of PARMOON, as long as the grids for SPS and CFD stood in a hierarchical relation to
each other. In the current example, where the grids were identical, this was trivially the case.

Simulations were conducted for all four parameter sets, with the goal to reproduce the average particle
diameter d̄ and its standard deviation σ as they were observed at the outlet of the experimental flow
crystallizer, see Table 2. The coagulation kernel K and the coagulation intensity parameter κ had
to be determined. In a first, unsuccessful attempt we tried the additive coagulation kernel (2). The
simulations performed with this kernel led to an excessive coagulation of large particles, resulting in
an almost unchanged median but unphysically large outliers of the PSD, when increasing the value
of κ. Therefore, we opted for the constant coagulation kernel (3), where the rate of coagulation is
unaffected by the size of the particles. With this kernel, we were able to produce physically reasonable
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Table 5: Computational results for all four parameter sets at the outflow boundary, averaged over
the given time interval. (Number) mean particle diameter d̄, standard deviation σ, maximal observed
particle diameter dmax, crystalline ASA mass flux ϕm and mass flow rate ṁ, scaled so as to easily
compare with the experimental data in Table 2.

Setup Time [s] d̄ [µm] σ [µm] dmax [µm] ϕm [kg/m2s] ṁ [g/min]
1 [900,1000] 238 85 953 7.443 1.40
2 [660,760] 215 73 858 11.571 2.18
3 [540,640] 189 56 682 15.088 2.84
4 [540,640] 176 54 645 16.499 3.12

results. Values for κ were chosen between 10−13 and 10−11 1/s in order to determine that value
which allowed for the best fitting of the experimental d̄ at the outlet. The outlet PSDs obtained with
this parameter study are shown in Figure 3. These results were gained by recording the properties,
especially the particle mass and diameter, of each particle that left the simulation domain at the outlet,
over 10 seconds after the end time of the experiment. The properties of each “measured” stochastic
particle were weighted with the product of its stochastic weight and the volume of the ensemble cell it
belonged to last. Thus, the boxplots in Figure 3 are weighted boxplots of the “raw” output data of the
computational particles. As the results are qualitatively the same for all four parameter sets, only the
slowest and fastest setup are presented.

It can be seen that increasing the coagulation parameter leads to a moderate increase of the median
distribution, which is as expected. On the other hand, it also leads to an increased variance, as can
be seen by the stretch of the boxes and whiskers. This effect was expected, too, since each collision
growth event moves one particle far to the right of the median particle size. Collision growth is, due two
its big jump height and relative sparseness, less uniform than surface growth, which happens often
and results in small size increases only. One can also see that the number and the range of outliers
increase, but by far not as severely as was the case for the additive kernel.

The dependence of the mean particle diameter on κ, disregarding standard deviation, is given in
Figure 4 for all four parameter sets.

Comparing the results of the parameter studies to the experimental results, best-fitting values of κ
could be determined. These values range between 5 · 10−13 and 10−12 1/s. The simulation results
proved to be rather sensitive to the parameter. For the two slow setups 1 and 2, κ1 = 9 · 10−13 1/s

and κ2 = 10−12 1/s proved to be the best choices. For the faster flowing setups, the best parameters
were half an order of magnitude smaller, κ3 = 6 · 10−13 1/s and κ4 = 5 · 10−13 1/s. The results
(number mean diameter d̄ and standard deviation σ) which were obtained with these κ are given in
Table 5, one should compare them to the experimental values in Table 2. One notices that the average
could be hit quite well. The standard deviation of the computed particle size distribution is about 1.1
to 1.5 times as high as the standard deviation of the experimental data. The values were gained by
averaging in time over all computational particles which left the computational domain at the outlet,
within the 100 s “recording time”. We also list the diameter of the largest observed particle. Those
values are somewhat too large, and if they would appeared in the actual experiment (tube diameter is
2000 µm), blockage would be likely. Indeed, in [10] the largest observed particles were of diameter
500 µm and blockage was not observed. Finally, the mass flux and mass flow rate of crystalline ASA
(averaged over 100 s) are given in Table 5. These values are remarkably close to experiments, see
Table 2.

Figures 5 and 6 show more results in the same spirit, supporting physical plausibility. In Figure 5, the
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Figure 3: Boxplots of PSD at exit for fastest and slowest parameter set, with different choices of coag-
ulation parameter κ in constant coagulation kernel. Box whiskers stretch to 1.5 interquartile range of
lower/upper quartile, X-axis scale is only ordinal.

ASA mass flux throughout the tube is shown, averaged over 50 s “recording time”, when stationary
conditions have already been reached for a while. One can see that the total ASA mass flux (crystalline
plus dissolved ASA) is constant in z. This is as expected, since the velocity field is divergence-free
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Figure 4: Mean particle diameter at the outlet, in dependence on κ, constant coagulation kernel, all four
parameter sets. Data is averaged over 100 seconds past the end time of the respective experiment.

and ASA mass must neither be lost nor gained. The green and blue lines show how dissolved ASA is
consumed by surface growth of the crystals. This process takes place, until supersaturation is zero and
equilibrium of dissolved and crystalline ASA is reached. One can see that surface growth is quickest in
the slowest setup (1), where equilibrium is reached essentially within the first 3 meters of the tube. The
faster the flow, the farther in the tube equilibrium is reached. In the fastest setup (4), it is not reached
before meter 8.

Figure 6 shows the first 10 meters of the tube in a zoom. It illustrates an expected and interesting
effect: there is a growth delay by coagulation. In Figure 6, the mass flux for four different, well apart
coagulation parameters κ is shown. One observes that the higher the coagulation parameter is, the
shallower is the slope of the mass flux curve, i.e., the slower is the transition of ASA from dissolved to
crystalline state by surface growth. The reason for this effect is the surface dependence of the growth
intensityGm, see (5). Collision growth maintains mass, but the total crystal surface area is reduced by
each coagulation event. Therefore, after coagulation, less crystal surface is available for new material
to attach, and surface growth is slowed down. This effect is clearly visible in Figure 6.

Finally, Figure 7 shows the net effect of the (simulated) operation of the flow crystallizer. For all four
parameter setups, the initial (at z = 0) and final (at z = 15) distribution is given, in terms of probability.
The data was gained the same way as described before, but applying the same procedure at both
outlet and inlet. It can be seen that in all four cases the peak of the distribution moved towards the
right, and additionally the initial sharpness is somewhat smeared. This effect is the stronger, the slower
the flow is, i.e., the more time the particles have to form larger aggregates by coagulation. One can
also observe that the histograms of the slowest setup are somewhat “jagged”. This is due to the
lower number of in- or outflowing computational particles per second. The effect could be attenuated
somewhat by collecting data for an even longer period of time.
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Figure 5: Time-averaged development of mass flux of crystalline and dissolved ASA along the tube,
all four setups, best coagulation parameter. In all cases, stationary conditions were reached and the
total ASA mass flux is constant (in space, on time average) along the tube.

Several further simulations and postprocessing steps were performed in order to confirm the reliability
of our results. All gave positive results. First, we checked the stochastic stability of the final results
of Table 5. This we did by sectioning the 100 s “recording time” at the end of each experiment into
four 25 s intervals and comparing mean diameter and standard deviation of those particles leaving
the tube within these intervals. The results are consistent, see Table 6. The values are closer together
for the faster flowing setups, which is a direct consequence of the higher number of computational
particles leaving the domain. We then made sure that our approach of simulating a single trajectory
of the stochastic process was sufficient, by running ten independent realizations of one example. We
picked the fastest flowing setup with optimal coagulation parameter. Averaging the results of these
runs (first 10 s of the recording time) gave a mean of 175 µm and, and a mean standard deviation of
53 µm, compare with Table 5. The fluctuations of the individual runs about those mean values can be
quantified by their standard deviation: it is 0.62 for the mean values and 0.64 for the individual stan-
dard deviations. We consider both standard deviations sufficiently small to justify the one-trajectory
approach.
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Figure 6: Time-averaged mass flux for four different coagulation parameters κ, in the first 10 m of the
tube crystallizer after steady-state conditions have been reached.

Table 6: Number mean particle diameter in µm and standard deviation (in brackets), for all four pa-
rameter setups and the particular optimal coagulation parameter. The given values refer to the first,
second, third and fourth 25 s of the 100 s “recording” time interval at the end of each simulation.

Setup First 25 s Second 25 s Third 25 s Fourth 25 s
1 240.53 (85.92) 239.60 (85.24) 235.61 (83.51) 237.57 (87.15)
2 213.60 (73.11) 215.05 (73.94) 215.87 (72.90) 214.51 (73.62)
3 189.05 (56.46) 188.29 (56.81) 189.60 (56.55) 189.16 (56.26)
4 175.17 (53.06) 176.63 (53.43) 175.12 (53.22) 175.95 (54.47)

For the fastest flowing parameter setup, we performed grid refinement tests. The grid was refined
only in flow direction, thus reducing the aspect ratio somewhat. The results for the best coagulation
parameter showed a slight, but systematic dependence on the grid size, see Table 7. The finer the
grid, the smaller was the number mean diameter, and the higher the standard deviation. Additionally,
we performed the same grid refinement tests for a no-coagulation setup in order to exclude the SPS
treatment as a source for this dependency. The dependency was qualitatively and quantitatively the
same for that setup.

In summary, with our new coupled method, we were able to reproduce the experimentally number
mean diameter quite well, with a similar coagulation parameter for all four setups. The results are phys-
ically plausible. There is an overestimation of the standard deviation, the experimental PSD showed
less variance. We can identify two sources of variance. One is particle coagulation, the other is the
spread in residence time in the tube crystallizer, that gets introduced by the parabolic Hagen–Poiseuille
flow profile. The first source of variance could be reduced by re-modeling the proportion of surface
growth and collision growth, favoring surface growth even more. Surface growth does not introduce
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Figure 7: Simulation results for all four setups, best coagulation parameter κ. Particle size distribution
at inlet and outlet is shown, measured over time interval [0 s, 10 s] (inlet) and the following intervals at
the outlet: [900, 950] (setup 1), [660, 710] (setup 2), [540, 590] (setup 3), [540, 590] (setup 4).
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Table 7: Results of grid refinement tests. Parameter setup 4, two choices of coagulation parameter κ,
five refinement levels. Values are particle number mean diameter and standard deviation in parenthe-
ses, both in µm. One observes a slight decline of the mean value and a slight increase of the standard
deviation with refinement.

N cells 150×5 300×5 600×5 1200×5 1500×5
κ = 5 · 10−13 1/s 176 (54) 175 (54) 175 (54) 174 (57) 174 (58)
κ = 0 1/s 140 (31) 140 (30) 140 (31) 139 (33) 138 (34)

as much variance as collision growth does. In addition, we think that replacing the simple coagulation
kernel (3) by a more appropriate kernel, which is planned for future work, might lead to a narrower
variance. The second source of variance could be dealt with by either taking a step back towards a
1d-model and transporting all particles with the same velocity, or by augmenting the 2d model. Ex-
perimental and numerical results from [40] suggest that smaller particles travel slower through a tube
crystallizer, since they follow the flow microstructure, thus spending more time in the crystallizer, hav-
ing more time to grow. If this conjecture is applicable to the ASA crystallizer, too, then capturing this
effect in the model could counterbalance the variance introduced with the different streaming layers,
thus keeping the standard deviation even closer to the experimental data.

6 Summary and Outlook

The newly developed coupling method was successfully applied to the axisymmetric 2d simulation of
a flow crystallizer. Experimental results could be reproduced well for four different operating conditions
of the crystallizer, the simulation results are physically plausible in all cases, and the computing times
were within reasonable bounds. To conduct these simulations, it was necessary to find a coupled for-
mulation of the population balance system and to choose accurate and efficient numerical schemes
for each sub-problem. Transfer of information between the CFD part and the stochastic particle simu-
lation had to be implemented and made efficient. The stochastic simulation had to be adapted to two
spatial dimensions, since preceding simulations that included convection focused on the 1d case only.

The obtained achievements form a good basis for the extension of the method to higher dimensions.
“Higher dimensions” here refers to both the external and the internal coordinates. As for the external
coordinates, the method should be used within a 3d setting. From the CFD perspective, this leads
to more degrees of freedom and denser matrices, which necessitates more sophisticated solvers.
Adapting the SPS to be performed in a 3d flow domain, on the other hand, will require great attention
to details, and these adaptations are the main challenges to overcome.

The first issue are wall boundary conditions. We will have to formulate and implement reflection con-
ditions, which mimic particle-wall collisions. A computational issue is the search for particles after the
transport step. If a particle is moved only within its cell or to a neighboring cell, locating allN computa-
tional particles after the transport step can be done inO(N) operations with a rather naive approach.
But if particles move farther than to a neighbor cell, a more refined technique is required to keep the
computational effort within bounds.

Several of the described difficulties might have appeared in 2d already, but were not apparent in the
ASA crystallizer example, because there all stream lines of the flow are aligned.

As for the internal coordinates, the severity of complications connected to an extension depends on
the used particle model. The SPS is a very natural framework for complicated particle models, due
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to the presence of computational particles. These can contain further information much easier than
non-stochastic models, which rely on averaged particle properties.1 Other inner dimensions could be
a second or third parameter for the geometry (needle shaped, elliptical, hexagonal particles, . . .) or
further chemical substances. The main challenge here is to define a sensible addition on the inner
coordinate space, which represents coagulation, and likewise a coagulation kernel K .

The simulations that were presented in this paper were performed in the spirit of a “proof-of-concept”
example. This example is well suited for classical methods, such as Direct Discretization Simulation
[39], Method Of Moments [29], or an Operator Splitting approach [1]. Therefore, the example would be
fit for a direct comparison of their accuracy and efficiency. This undertaking is not in the scope of this
work and will be the subject of further studies.
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