Browsing by Author "Ahlawat, Ajit"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemAn Overview on the Role of Relative Humidity in Airborne Transmission of SARS-CoV-2 in Indoor Environments(Taoyuan City : Taiwan Association for Aerosol Research (TAAR), 2020) Ahlawat, Ajit; Wiedensohler, Alfred; Mishra, Sumit KumarCOVID-19 disease is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which originated in Wuhan, China and spread with an astonishing rate across the world. The transmission routes of SARS-CoV-2 are still debated, but recent evidence strongly suggests that COVID-19 could be transmitted via air in poorly ventilated places. Some studies also suggest the higher surface stability of SARS-CoV-2 as compared to SARS-CoV-1. It is also possible that small viral particles may enter into indoor environments from the various emission sources aided by environmental factors such as relative humidity, wind speed, temperature, thus representing a type of an aerosol transmission. Here, we explore the role of relative humidity in airborne transmission of SARS-CoV-2 virus in indoor environments based on recent studies around the world. Humidity affects both the evaporation kinematics and particle growth. In dry indoor places i.e., less humidity (< 40% RH), the chances of airborne transmission of SARS-CoV-2 are higher than that of humid places (i.e., > 90% RH). Based on earlier studies, a relative humidity of 40–60% was found to be optimal for human health in indoor places. Thus, it is extremely important to set a minimum relative humidity standard for indoor environments such as hospitals, offices and public transports for minimization of airborne spread of SARS-CoV-2. © The Author(s).
- ItemPhysico-Chemical Properties and Deposition Potential of PM2.5 during Severe Smog Event in Delhi, India(Basel : MDPI AG, 2022) Fatima, Sadaf; Mishra, Sumit Kumar; Ahlawat, Ajit; Dimri, Ashok PriyadarshanThe present work studies a severe smog event that occurred in Delhi (India) in 2017, targeting the characterization of PM2.5 and its deposition potential in human respiratory tract of different population groups in which the PM2.5 levels raised from 124.0 µg/m3 (pre-smog period) to 717.2 µg/m3 (during smog period). Higher concentration of elements such as C, N, O, Na, Mg, Al, Si, S, Fe, Cl, Ca, Ti, Cr, Pb, Fe, K, Cu, Cl, P, and F were observed during the smog along with dominant organic functional groups (aldehyde, ketones, alkyl halides (R-F; R-Br; R-Cl), ether, etc.), which supported potential contribution from transboundary biomass-burning activities along with local pollution sources and favorable meteorological conditions. The morphology of individual particles were found mostly as non-spherical, including carbon fractals, aggregates, sharp-edged, rod-shaped, and flaky structures. A multiple path particle dosimetry (MPPD) model showed significant deposition potential of PM2.5 in terms of deposition fraction, mass rate, and mass flux during smog conditions in all age groups. The highest PM2.5 deposition fraction and mass rate were found for the head region followed by the alveolar region of the human respiratory tract. The highest mass flux was reported for 21-month-old (4.7 × 102 µg/min/m2), followed by 3-month-old (49.2 µg/min/m2) children, whereas it was lowest for 21-year-old adults (6.8 µg/min/m2), indicating babies and children were more vulnerable to PM2.5 pollution than adults during smog. Deposition doses of toxic elements such as Cr, Fe, Zn, Pb, Cu, Mn, and Ni were also found to be higher (up to 1 × 10−7 µg/kg/day) for children than adults.
- ItemPreventing airborne transmission of SARS-CoV-2 in hospitals and nursing homes(Basel : MDPI AG, 2020) Ahlawat, Ajit; Mishra, Sumit Kumar; Birks, John W.; Costabile, Francesca; Wiedensohler, Alfred[No abstract available]