Repository logo
  • English
  • Deutsch
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • Home
  • Browse
    About
  1. Home
  2. Browse by Author

Browsing by Author "Auer, Sören"

Now showing 1 - 20 of 55
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    24th International Conference on Business Information Systems : Preface
    (Hannover : TIB Open Publishing, 2021) Abramowicz, Witold; Auer, Sören; Abramowicz, Witold; Auer, Sören; Lewańska, Elżbieta
  • Loading...
    Thumbnail Image
    Item
    Accessibility and Personalization in OpenCourseWare : An Inclusive Development Approach
    (Piscataway, NJ : IEEE, 2020) Elias, Mirette; Ruckhaus, Edna; Draffan, E.A.; James, Abi; Suárez-Figueroa, Mari Carmen; Lohmann, Steffen; Khiat, Abderrahmane; Auer, Sören; Chang, Maiga; Sampson, Demetrios G.; Huang, Ronghuai; Hooshyar, Danial; Chen, Nian-Shing; Kinshuk; Pedaste, Margus
    OpenCourseWare (OCW) has become a desirable source for sharing free educational resources which means there will always be users with differing needs. It is therefore the responsibility of OCW platform developers to consider accessibility as one of their prioritized requirements to ensure ease of use for all, including those with disabilities. However, the main challenge when creating an accessible platform is the ability to address all the different types of barriers that might affect those with a wide range of physical, sensory and cognitive impairments. This article discusses accessibility and personalization strategies and their realisation in the SlideWiki platform, in order to facilitate the development of accessible OCW. Previously, accessibility was seen as a complementary feature that can be tackled in the implementation phase. However, a meaningful integration of accessibility features requires thoughtful consideration during all project phases with active involvement of related stakeholders. The evaluation results and lessons learned from the SlideWiki development process have the potential to assist in the development of other systems that aim for an inclusive approach. © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
  • Loading...
    Thumbnail Image
    Item
    Analysing the evolution of computer science events leveraging a scholarly knowledge graph: a scientometrics study of top-ranked events in the past decade
    (Dordrecht [u.a.] : Springer Science + Business Media B.V., 2021) Lackner, Arthur; Fathalla, Said; Nayyeri, Mojtaba; Behrend, Andreas; Manthey, Rainer; Auer, Sören; Lehmann, Jens; Vahdati, Sahar
    The publish or perish culture of scholarly communication results in quality and relevance to be are subordinate to quantity. Scientific events such as conferences play an important role in scholarly communication and knowledge exchange. Researchers in many fields, such as computer science, often need to search for events to publish their research results, establish connections for collaborations with other researchers and stay up to date with recent works. Researchers need to have a meta-research understanding of the quality of scientific events to publish in high-quality venues. However, there are many diverse and complex criteria to be explored for the evaluation of events. Thus, finding events with quality-related criteria becomes a time-consuming task for researchers and often results in an experience-based subjective evaluation. OpenResearch.org is a crowd-sourcing platform that provides features to explore previous and upcoming events of computer science, based on a knowledge graph. In this paper, we devise an ontology representing scientific events metadata. Furthermore, we introduce an analytical study of the evolution of Computer Science events leveraging the OpenResearch.org knowledge graph. We identify common characteristics of these events, formalize them, and combine them as a group of metrics. These metrics can be used by potential authors to identify high-quality events. On top of the improved ontology, we analyzed the metadata of renowned conferences in various computer science communities, such as VLDB, ISWC, ESWC, WIMS, and SEMANTiCS, in order to inspect their potential as event metrics.
  • Loading...
    Thumbnail Image
    Item
    Analysing the requirements for an Open Research Knowledge Graph: use cases, quality requirements, and construction strategies
    (Berlin ; Heidelberg ; New York : Springer, 2021) Brack, Arthur; Hoppe, Anett; Stocker, Markus; Auer, Sören; Ewerth, Ralph
    Current science communication has a number of drawbacks and bottlenecks which have been subject of discussion lately: Among others, the rising number of published articles makes it nearly impossible to get a full overview of the state of the art in a certain field, or reproducibility is hampered by fixed-length, document-based publications which normally cannot cover all details of a research work. Recently, several initiatives have proposed knowledge graphs (KG) for organising scientific information as a solution to many of the current issues. The focus of these proposals is, however, usually restricted to very specific use cases. In this paper, we aim to transcend this limited perspective and present a comprehensive analysis of requirements for an Open Research Knowledge Graph (ORKG) by (a) collecting and reviewing daily core tasks of a scientist, (b) establishing their consequential requirements for a KG-based system, (c) identifying overlaps and specificities, and their coverage in current solutions. As a result, we map necessary and desirable requirements for successful KG-based science communication, derive implications, and outline possible solutions.
  • Loading...
    Thumbnail Image
    Item
    An Approach to Evaluate User Interfaces in a Scholarly Knowledge Communication Domain
    (Cham : Springer, 2023) Obrezkov, Denis; Oelen, Allard; Auer, Sören; Abdelnour-Nocera, José L.; Marta Lárusdóttir; Petrie, Helen; Piccinno, Antonio; Winckler, Marco
    The amount of research articles produced every day is overwhelming: scholarly knowledge is getting harder to communicate and easier to get lost. A possible solution is to represent the information in knowledge graphs: structures representing knowledge in networks of entities, their semantic types, and relationships between them. But this solution has its own drawback: given its very specific task, it requires new methods for designing and evaluating user interfaces. In this paper, we propose an approach for user interface evaluation in the knowledge communication domain. We base our methodology on the well-established Cognitive Walkthough approach but employ a different set of questions, tailoring the method towards domain-specific needs. We demonstrate our approach on a scholarly knowledge graph implementation called Open Research Knowledge Graph (ORKG).
  • Loading...
    Thumbnail Image
    Item
    Clustering Semantic Predicates in the Open Research Knowledge Graph
    (Heidelberg : Springer, 2022) Arab Oghli, Omar; D’Souza, Jennifer; Auer, Sören
    When semantically describing knowledge graphs (KGs), users have to make a critical choice of a vocabulary (i.e. predicates and resources). The success of KG building is determined by the convergence of shared vocabularies so that meaning can be established. The typical lifecycle for a new KG construction can be defined as follows: nascent phases of graph construction experience terminology divergence, while later phases of graph construction experience terminology convergence and reuse. In this paper, we describe our approach tailoring two AI-based clustering algorithms for recommending predicates (in RDF statements) about resources in the Open Research Knowledge Graph (ORKG) https://orkg.org/. Such a service to recommend existing predicates to semantify new incoming data of scholarly publications is of paramount importance for fostering terminology convergence in the ORKG. Our experiments show very promising results: a high precision with relatively high recall in linear runtime performance. Furthermore, this work offers novel insights into the predicate groups that automatically accrue loosely as generic semantification patterns for semantification of scholarly knowledge spanning 44 research fields.
  • Loading...
    Thumbnail Image
    Item
    Compact representations for efficient storage of semantic sensor data
    (Dordrecht : Springer Science + Business Media B.V, 2021) Karim, Farah; Vidal, Maria-Esther; Auer, Sören
    Nowadays, there is a rapid increase in the number of sensor data generated by a wide variety of sensors and devices. Data semantics facilitate information exchange, adaptability, and interoperability among several sensors and devices. Sensor data and their meaning can be described using ontologies, e.g., the Semantic Sensor Network (SSN) Ontology. Notwithstanding, semantically enriched, the size of semantic sensor data is substantially larger than raw sensor data. Moreover, some measurement values can be observed by sensors several times, and a huge number of repeated facts about sensor data can be produced. We propose a compact or factorized representation of semantic sensor data, where repeated measurement values are described only once. Furthermore, these compact representations are able to enhance the storage and processing of semantic sensor data. To scale up to large datasets, factorization based, tabular representations are exploited to store and manage factorized semantic sensor data using Big Data technologies. We empirically study the effectiveness of a semantic sensor’s proposed compact representations and their impact on query processing. Additionally, we evaluate the effects of storing the proposed representations on diverse RDF implementations. Results suggest that the proposed compact representations empower the storage and query processing of sensor data over diverse RDF implementations, and up to two orders of magnitude can reduce query execution time.
  • Loading...
    Thumbnail Image
    Item
    Compacting frequent star patterns in RDF graphs
    (Dordrecht : Springer Science + Business Media B.V, 2020) Karim, Farah; Vidal, Maria-Esther; Auer, Sören
    Knowledge graphs have become a popular formalism for representing entities and their properties using a graph data model, e.g., the Resource Description Framework (RDF). An RDF graph comprises entities of the same type connected to objects or other entities using labeled edges annotated with properties. RDF graphs usually contain entities that share the same objects in a certain group of properties, i.e., they match star patterns composed of these properties and objects. In case the number of these entities or properties in these star patterns is large, the size of the RDF graph and query processing are negatively impacted; we refer these star patterns as frequent star patterns. We address the problem of identifying frequent star patterns in RDF graphs and devise the concept of factorized RDF graphs, which denote compact representations of RDF graphs where the number of frequent star patterns is minimized. We also develop computational methods to identify frequent star patterns and generate a factorized RDF graph, where compact RDF molecules replace frequent star patterns. A compact RDF molecule of a frequent star pattern denotes an RDF subgraph that instantiates the corresponding star pattern. Instead of having all the entities matching the original frequent star pattern, a surrogate entity is added and related to the properties of the frequent star pattern; it is linked to the entities that originally match the frequent star pattern. Since the edges between the entities and the objects in the frequent star pattern are replaced by edges between these entities and the surrogate entity of the compact RDF molecule, the size of the RDF graph is reduced. We evaluate the performance of our factorization techniques on several RDF graph benchmarks and compare with a baseline built on top gSpan, a state-of-the-art algorithm to detect frequent patterns. The outcomes evidence the efficiency of proposed approach and show that our techniques are able to reduce execution time of the baseline approach in at least three orders of magnitude. Additionally, RDF graph size can be reduced by up to 66.56% while data represented in the original RDF graph is preserved.
  • Loading...
    Thumbnail Image
    Item
    A comprehensive quality assessment framework for scientific events
    (Dordrecht [u.a.] : Springer Science + Business Media B.V., 2020) Vahdati, Sahar; Fathalla, Said; Lange, Christoph; Behrend, Andreas; Say, Aysegul; Say, Zeynep; Auer, Sören
    Systematic assessment of scientific events has become increasingly important for research communities. A range of metrics (e.g., citations, h-index) have been developed by different research communities to make such assessments effectual. However, most of the metrics for assessing the quality of less formal publication venues and events have not yet deeply investigated. It is also rather challenging to develop respective metrics because each research community has its own formal and informal rules of communication and quality standards. In this article, we develop a comprehensive framework of assessment metrics for evaluating scientific events and involved stakeholders. The resulting quality metrics are determined with respect to three general categories—events, persons, and bibliometrics. Our assessment methodology is empirically applied to several series of computer science events, such as conferences and workshops, using publicly available data for determining quality metrics. We show that the metrics’ values coincide with the intuitive agreement of the community on its “top conferences”. Our results demonstrate that highly-ranked events share similar profiles, including the provision of outstanding reviews, visiting diverse locations, having reputed people involved, and renowned sponsors.
  • Loading...
    Thumbnail Image
    Item
    Creating a Scholarly Knowledge Graph from Survey Article Tables
    (Cham : Springer, 2020) Oelen, Allard; Stocker, Markus; Auer, Sören; Ishita, Emi; Pang, Natalie Lee San; Zhou, Lihong
    Due to the lack of structure, scholarly knowledge remains hardly accessible for machines. Scholarly knowledge graphs have been proposed as a solution. Creating such a knowledge graph requires manual effort and domain experts, and is therefore time-consuming and cumbersome. In this work, we present a human-in-the-loop methodology used to build a scholarly knowledge graph leveraging literature survey articles. Survey articles often contain manually curated and high-quality tabular information that summarizes findings published in the scientific literature. Consequently, survey articles are an excellent resource for generating a scholarly knowledge graph. The presented methodology consists of five steps, in which tables and references are extracted from PDF articles, tables are formatted and finally ingested into the knowledge graph. To evaluate the methodology, 92 survey articles, containing 160 survey tables, have been imported in the graph. In total, 2626 papers have been added to the knowledge graph using the presented methodology. The results demonstrate the feasibility of our approach, but also indicate that manual effort is required and thus underscore the important role of human experts.
  • Loading...
    Thumbnail Image
    Item
    Creation of a Knowledge Space by Semantically Linking Data Repository and Knowledge Management System - a Use Case from Production Engineering
    (Laxenburg : IFAC, 2022) Sheveleva, Tatyana; Wawer, Max Leo; Oladazimi, Pooya; Koepler, Oliver; Nürnberger, Florian; Lachmayer, Roland; Auer, Sören; Mozgova, Iryna
    The seamless documentation of research data flows from generation, processing, analysis, publication, and reuse is of utmost importance when dealing with large amounts of data. Semantic linking of process documentation and gathered data creates a knowledge space enabling the discovery of relations between steps of process chains. This paper shows the design of two systems for data deposit and for process documentation using semantic annotations and linking on a use case of a process chain step of the Tailored Forming Technology.
  • Loading...
    Thumbnail Image
    Item
    Crowdsourcing Scholarly Discourse Annotations
    (New York, NY : ACM, 2021) Oelen, Allard; Stocker, Markus; Auer, Sören
    The number of scholarly publications grows steadily every year and it becomes harder to find, assess and compare scholarly knowledge effectively. Scholarly knowledge graphs have the potential to address these challenges. However, creating such graphs remains a complex task. We propose a method to crowdsource structured scholarly knowledge from paper authors with a web-based user interface supported by artificial intelligence. The interface enables authors to select key sentences for annotation. It integrates multiple machine learning algorithms to assist authors during the annotation, including class recommendation and key sentence highlighting. We envision that the interface is integrated in paper submission processes for which we define three main task requirements: The task has to be . We evaluated the interface with a user study in which participants were assigned the task to annotate one of their own articles. With the resulting data, we determined whether the participants were successfully able to perform the task. Furthermore, we evaluated the interface’s usability and the participant’s attitude towards the interface with a survey. The results suggest that sentence annotation is a feasible task for researchers and that they do not object to annotate their articles during the submission process.
  • Loading...
    Thumbnail Image
    Item
    Development of a Domain-Specific Ontology to Support Research Data Management for the Tailored Forming Technology
    (Amsterdam [u.a.] : Elsevier, 2020) Sheveleva, Tatyana; Koepler, Oliver; Mozgova, Iryna; Lachmayer, Roland; Auer, Sören
    The global trend towards the comprehensive digitisation of technologies in product manufacturing is leading to radical changes in engineering processes and requires a new extended understanding of data handling. The amounts of data to be considered are becoming larger and more complex. Data can originate from process simulations, machines used or subsequent analyses, which together with the resulting components serve as a complete and reproducible description of the process. Within the Collaborative Research Centre "Process Chain for Manufacturing of Hybrid High Performance Components by Tailored Forming", interdisciplinary work is being carried out on the development of process chains for the production of hybrid components. The management of the generated data and descriptive metadata, the support of the process steps and preliminary and subsequent data analysis are fundamental challenges. The objective is a continuous, standardised data management according to the FAIR Data Principles so that process-specific data and parameters can be transferred together with the components or samples to subsequent processes, individual process designs can take place and processes of machine learning can be accelerated. A central element is the collaborative development of a domain-specific ontology for a semantic description of data and processes of the entire process chain.
  • Loading...
    Thumbnail Image
    Item
    Domain-Independent Extraction of Scientific Concepts from Research Articles
    (Cham : Springer, 2020) Brack, Arthur; D'Souza, Jennifer; Hoppe, Anett; Auer, Sören; Ewerth, Ralph; Jose, Joemon M.; Yilmaz, Emine; Magalhães, João; Castells, Pablo; Ferro, Nicola; Silva, Mário J.; Martins, Flávio
    We examine the novel task of domain-independent scientific concept extraction from abstracts of scholarly articles and present two contributions. First, we suggest a set of generic scientific concepts that have been identified in a systematic annotation process. This set of concepts is utilised to annotate a corpus of scientific abstracts from 10 domains of Science, Technology and Medicine at the phrasal level in a joint effort with domain experts. The resulting dataset is used in a set of benchmark experiments to (a) provide baseline performance for this task, (b) examine the transferability of concepts between domains. Second, we present a state-of-the-art deep learning baseline. Further, we propose the active learning strategy for an optimal selection of instances from among the various domains in our data. The experimental results show that (1) a substantial agreement is achievable by non-experts after consultation with domain experts, (2) the baseline system achieves a fairly high F1 score, (3) active learning enables us to nearly halve the amount of required training data.
  • Loading...
    Thumbnail Image
    Item
    The Dynamics of Coalition Formation on Complex Networks
    (London : Nature Publishing Group, 2015) Auer, Sören; Heitzig, J.; Kornek, U.; Schöll, E.; Kurths, J.
  • Loading...
    Thumbnail Image
    Item
    Easy Semantification of Bioassays
    (Heidelberg : Springer, 2022) Anteghini, Marco; D’Souza, Jennifer; dos Santos, Vitor A. P. Martins; Auer, Sören
    Biological data and knowledge bases increasingly rely on Semantic Web technologies and the use of knowledge graphs for data integration, retrieval and federated queries. We propose a solution for automatically semantifying biological assays. Our solution contrasts the problem of automated semantification as labeling versus clustering where the two methods are on opposite ends of the method complexity spectrum. Characteristically modeling our problem, we find the clustering solution significantly outperforms a deep neural network state-of-the-art labeling approach. This novel contribution is based on two factors: 1) a learning objective closely modeled after the data outperforms an alternative approach with sophisticated semantic modeling; 2) automatically semantifying biological assays achieves a high performance F1 of nearly 83%, which to our knowledge is the first reported standardized evaluation of the task offering a strong benchmark model.
  • Loading...
    Thumbnail Image
    Item
    Encoding Knowledge Graph Entity Aliases in Attentive Neural Network for Wikidata Entity Linking
    (Berlin ; Heidelberg : Springer, 2020) Mulang’, Isaiah Onando; Singh, Kuldeep; Vyas, Akhilesh; Shekarpour, Saeedeh; Vidal, Maria-Esther; Lehmann, Jens; Auer, Sören; Huang, Zhisheng; Beek, Wouter; Wang, Hua; Zhou, Rui; Zhang, Yanchun
    The collaborative knowledge graphs such as Wikidata excessively rely on the crowd to author the information. Since the crowd is not bound to a standard protocol for assigning entity titles, the knowledge graph is populated by non-standard, noisy, long or even sometimes awkward titles. The issue of long, implicit, and nonstandard entity representations is a challenge in Entity Linking (EL) approaches for gaining high precision and recall. Underlying KG in general is the source of target entities for EL approaches, however, it often contains other relevant information, such as aliases of entities (e.g., Obama and Barack Hussein Obama are aliases for the entity Barack Obama). EL models usually ignore such readily available entity attributes. In this paper, we examine the role of knowledge graph context on an attentive neural network approach for entity linking on Wikidata. Our approach contributes by exploiting the sufficient context from a KG as a source of background knowledge, which is then fed into the neural network. This approach demonstrates merit to address challenges associated with entity titles (multi-word, long, implicit, case-sensitive). Our experimental study shows ≈8% improvements over the baseline approach, and significantly outperform an end to end approach for Wikidata entity linking.
  • Loading...
    Thumbnail Image
    Item
    EVENTSKG: A 5-Star Dataset of Top-Ranked Events in Eight Computer Science Communities
    (Berlin ; Heidelberg : Springer, 2019) Fathalla, Said; Lange, Christoph; Auer, Sören; Hitzler, Pascal; Fernández, Miriam; Janowicz, Krzysztof; Zaveri, Amrapali; Gray, Alasdair J.G.; Lopez, Vanessa; Haller, Armin; Hammar, Karl
    Metadata of scientific events has become increasingly available on the Web, albeit often as raw data in various formats, disregarding its semantics and interlinking relations. This leads to restricting the usability of this data for, e.g., subsequent analyses and reasoning. Therefore, there is a pressing need to represent this data in a semantic representation, i.e., Linked Data. We present the new release of the EVENTSKG dataset, comprising comprehensive semantic descriptions of scientific events of eight computer science communities. Currently, EVENTSKG is a 5-star dataset containing metadata of 73 top-ranked event series (almost 2,000 events) established over the last five decades. The new release is a Linked Open Dataset adhering to an updated version of the Scientific Events Ontology, a reference ontology for event metadata representation, leading to richer and cleaner data. To facilitate the maintenance of EVENTSKG and to ensure its sustainability, EVENTSKG is coupled with a Java API that enables users to add/update events metadata without going into the details of the representation of the dataset. We shed light on events characteristics by analyzing EVENTSKG data, which provides a flexible means for customization in order to better understand the characteristics of renowned CS events.
  • Loading...
    Thumbnail Image
    Item
    Experience: Open fiscal datasets, common issues, and recommendations
    (Zenodo, 2018) Musyaffa, Fathoni A.; Engels, Christiane; Vidal, Maria-Esther; Orlandi, Fabrizio; Auer, Sören
    A pre-print paper detailing recommendation for publishing fiscal data, including assessment framework for fiscal datasets. This paper has been accepted at ACM Journal of Data and Information Quality (JDIQ) in 2018.
  • Loading...
    Thumbnail Image
    Item
    Formalizing Gremlin pattern matching traversals in an integrated graph Algebra
    (Aachen, Germany : RWTH Aachen, 2019) Thakkar, Harsh; Auer, Sören; Vidal, Maria-Esther; Samavi, Reza; Consens, Mariano P.; Khatchadourian, Shahan; Nguyen, Vinh; Sheth, Amit; Giménez-García, José M.; Thakkar, Harsh
    Graph data management (also called NoSQL) has revealed beneficial characteristics in terms of flexibility and scalability by differ-ently balancing between query expressivity and schema flexibility. This peculiar advantage has resulted into an unforeseen race of developing new task-specific graph systems, query languages and data models, such as property graphs, key-value, wide column, resource description framework (RDF), etc. Present-day graph query languages are focused towards flex-ible graph pattern matching (aka sub-graph matching), whereas graph computing frameworks aim towards providing fast parallel (distributed) execution of instructions. The consequence of this rapid growth in the variety of graph-based data management systems has resulted in a lack of standardization. Gremlin, a graph traversal language, and machine provide a common platform for supporting any graph computing sys-tem (such as an OLTP graph database or OLAP graph processors). In this extended report, we present a formalization of graph pattern match-ing for Gremlin queries. We also study, discuss and consolidate various existing graph algebra operators into an integrated graph algebra.
  • «
  • 1 (current)
  • 2
  • 3
  • »
unread
  • Imprint
  • Privacy policy
  • Accessibility
unread