Browsing by Author "Awakowicz, Peter"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemModelling of a miniature microwave driven nitrogen plasma jet and comparison to measurements(Bristol : IOP Publ., 2021) Klute, Michael; Kemaneci, Efe; Porteanu, Horia-Eugen; Stefanović, Ilija; Heinrich, Wolfgang; Awakowicz, Peter; Brinkmann, Ralf PeterThe MMWICP (miniature microwave ICP) is a new plasma source using the induction principle. Recently Klute et al presented a mathematical model for the electromagnetic fields and power balance of the new device. In this work the electromagnetic model is coupled with a global chemistry model for nitrogen, based on the chemical reaction set of Thorsteinsson and Gudmundsson and customized for the geometry of the MMWICP. The combined model delivers a quantitative description for a non-thermal plasma at a pressure of p = 1000 Pa and a gas temperature of Tg = 650–1600 K. Comparison with published experimental data shows a good agreement for the volume averaged plasma parameters at high power, for the spatial distribution of the discharge and for the microwave measurements. Furthermore, the balance of capacitive and inductive coupling in the absorbed power is analyzed. This leads to the interpretation of the discharge regime at an electron density of ne ≈ 6.4 × 1018 m−3 as E/H-hybridmode with an capacitive and inductive component.
- ItemOptical absorption spectroscopy of reactive oxygen and nitrogen species in a surface dielectric barrier discharge(Bristol : IOP Publ., 2022) Schücke, Lars; Bodnar, Arisa; Friedrichs, Niklas; Böddecker, Alexander; Peters, Niklas; Ollegott, Kevin; Oberste-Beulmann, Christian; Wirth, Philipp; Nguyen-Smith, Ryan T; Korolov, Ihor; Gibson, Andrew R; Muhler, Martin; Awakowicz, PeterA twin surface dielectric barrier discharge (SDBD) ignited in a dry synthetic air gas stream is studied regarding the formation of reactive oxygen and nitrogen species (RONS) and their impact on the conversion of admixed n-butane. The discharge is driven by a damped sinusoidal voltage waveform at peak-to-peak amplitudes of 8 kVpp-13 kVpp and pulse repetition frequencies of 250 Hz-4000 Hz. Absolute densities of O3, NO2, NO3, as well as estimates of the sum of the densities of N2O4 and N2O5 are determined temporally resolved by means of optical absorption spectroscopy using a laser driven broadband light source, suitable interference filters, and a photodiode detector. The measured densities are acquired across the center of the reactor chamber as well as at the outlet of the chamber. The temporal and spatial evolution of the species' densities is correlated to the conversion of n-butane at concentrations of 50 ppm and 400 ppm, measured by means of flame ionization detectors. The n-butane is admixed either before or after the reactor chamber, in order to separate the impact of short- and long-lived reactive species on the conversion process. It is found that, despite the stationary conversion at the selected operating points, at higher voltages and repetition frequencies the densities of the measured species are not in steady state. Based on the produced results it is presumed that the presence of n-butane modifies the formation and consumption pathways of O3. At the same time, there is no significant impact on the formation of dinitrogen oxides (N2O4 and N2O5). Furthermore, a comparatively high conversion of n-butane, when admixed at the outlet of the reactor chamber is observed. These findings are discussed together with known rate coefficients for the reactions of n-butane with selected RONS.
- ItemTheoretical investigation of a miniature microwave driven plasma jet(Bristol : IOP Publ., 2020) Klute, Michael; Porteanu, Horia-Eugen; Stefanovic, Ilija; Heinrich, Wolfgang; Awakowicz, Peter; Brinkmann, Ralf PeterRadio frequency driven plasma jets are compact plasma sources which are used in many advanced fields such as surface engineering or biomedicine. The MMWICP (miniature micro wave ICP) is a particular variant of that device class. Unlike other plasma jets which employ capacitive coupling, the MMWICP uses the induction principle. The jet is integrated into a miniature cavity structure which realizes an LC-resonator with a high quality factor. When excited at its resonance frequency, the resonator develops a high internal current which—transferred to the plasma via induction—provides an efficient source of RF power. This work presents a theoretical model of the MMWICP. The possible operation points of the device are analyzed. Two different regimes can be identified, the capacitive E-mode with a plasma density of ne ≈ 5 × 1017 m−3, and the inductive H-mode with densities of ne ⩾ 1019 m−3. The E to H transition shows a pronounced hysteresis behavior.
- ItemTuning the Permeation Properties of Poly(1-trimethylsilyl-1-propyne) by Vapor Phase Infiltration Using Trimethylaluminum(Weinheim : Wiley-VCH, 2024) Jenderny, Jonathan; Boysen, Nils; Rubner, Jens; Zysk, Frederik; Preischel, Florian; Arcos, Teresa de los; Damerla, Varun Raj; Kostka, Aleksander; Franke, Jonas; Dahlmann, Rainer; Kühne, Thomas D.; Wessling, Matthias; Awakowicz, Peter; Devi, AnjanaVapor phase infiltration (VPI) has emerged as a promising tool for fabrication of novel hybrid materials. In the field of polymeric gas separation membranes, a beneficial impact on stability and membrane performance is known for several polymers with differing functional groups. This study for the first time investigates VPI of trimethylaluminum (TMA) into poly(1-trimethylsilyl-1-propyne) (PTMSP), featuring a carbon–carbon double bond as functional group. Saturation of the precursor inside the polymer is already attained after 60 s infiltration time leading to significant densification of the material. Depth profiling proves accumulation of aluminum in the polymer itself, but a significantly increased accumulation is visible in the gradient layer between polymer and SiO2 substrate. A reaction pathway is proposed and supplemented by density-functional theory (DFT) calculations. Infrared spectra derived from both experiments and simulation support the presented reaction pathway. In terms of permeance, a favorable impact on selectivity is observed for infiltration times up to 1 s. Longer infiltration times yield greatly reduced permeance values close or even below the detection limit of the measurement device. The present results of this study set a strong basis for the application of VPI on polymers for gas-barrier and membrane applications in the future.