### Browsing by Author "Babushkin, Ihar"

Now showing 1 - 20 of 24

###### Results Per Page

###### Sort Options

- Item3D numerical simulations of THz generation by two-color laser filaments(Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2012) Bergé, Luc; Skupin, Stefan; Köhler, Christian; Babushkin, Ihar; Herrmann, JoachimTerahertz (THz) radiation produced by the filamentation of two-color pulses over long distances in argon is numerically investigated using a comprehensive model in full spacetime resolved geometry. We show that the dominant physical mechanism for THz generation in the filamentation regime at clamping intensity is based on quasi-dc plasma currents. The calculated THz spectra for different pump pulse energies and pulse durations are in agreement with previously reported experimental observations. For the same pulse parameters, near-infrared pump pulses at 2 m are shown to generate a more than one order of magnitude larger THz yield than pumps centered at 800 nm.
- ItemAll-optical supercontinuum switching(London : Springer Nature, 2020) Melchert, Oliver; Brée, Carsten; Tajalli, Ayhan; Pape, Alexander; Arkhipov, Rostislav; Willms, Stephanie; Babushkin, Ihar; Skryabin, Dmitry; Steinmeyer, Günter; Morgner, Uwe; Demircan, AyhanEfficient all-optical switching is a challenging task as photons are bosons and cannot immediately interact with each other. Consequently, one has to resort to nonlinear optical interactions, with the Kerr gate being the classical example. However, the latter requires strong pulses to switch weaker ones. Numerous approaches have been investigated to overcome the resulting lack of fan-out capability of all-optical switches, most of which relied on types of resonant enhancement of light-matter interaction. Here we experimentally demonstrate a novel approach that utilizes switching between different portions of soliton fission induced supercontinua, exploiting an optical event horizon. This concept enables a high switching efficiency and contrast in a dissipation free setting. Our approach enables fan-out, does not require critical biasing, and is at least partially cascadable. Controlling complex soliton dynamics paves the way towards building all-optical logic gates with advanced functionalities. © 2020, The Author(s).
- ItemCoherent passive mode-locking in lasers: Qualitative analysis and numerical simulations(Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Arkhipov, Rostislav M.; Babushkin, Ihar; Arkhipov, Mikhail V.In the present work we report the possibility of passive mode-locking based on the coherent interaction of light with the amplifying and absorbing media in lasers with ring and linear cavities. We consider the realistic and practically interesting case when the absorbing and amplifying media are separated in the cavity space but not homogeneously mixed in the volume of the cavity, as was considered earlier in the literature. We perform qualitative consideration of coherent passive mode-locking based on the area theorem of McCall and Hahn and its graphical representation for the first time. We show that other, not soliton scenarios of passive mode-locking exist, and that coherent mode-locking is self-starting (lasing without an injection seeding pulse is possible). We point to the fact that the spectral width of the laser generation can be significantly larger than the spectral bandwidth of the gain medium. Numerical simulations were performed using the system of Maxwell-Bloch equations in the slowly varying envelope approximation.
- ItemDirectionality of THz emission from photoinduced gas plasmas(Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2011) Köhler, Christian; Cabrera-Granado, Eduardo; Babushkin, Ihar; Bergé, Luc; Herrmann, Joachim; Skupin, StefanForward and backward THz emission by ionizing two-color laser pulses in gas is investigated by means of a simple semi-analytical model based on Jefimenko's equation and rigorous Maxwell simulations in one and two dimensions. We find the emission in backward direction having a much smaller spectral bandwidth than in forward direction and explain this by interference effects. Forward THz radiation is generated predominantly at the ionization front and is thus almost not affected by the opacity of the plasma, in excellent agreement with results obtained from a unidirectional pulse propagation model.
- ItemThe Effect of Chirp on Pulse Compression at a Group Velocity Horizon(New York, NY : IEEE, 2016) Babushkin, Ihar; Amiranashvili, Shalva; Bree, Carsten; Morgner, Uwe; Steinmeyer, Gunter; Demircan, AyhanGroup-velocity matched cross-phase modulation between a fundamental soliton and a dispersive wave packet has been previously suggested for optical switching applications similar to an optical transistor. Moreover, the nonlinear interaction in the resulting group-velocity horizon can be exploited for adiabatic compression of the soliton down into the few-cycle regime. Here, we study the delicate phase- and frequency-matching mechanism of soliton/dispersive wave interaction by controlling the input chirp of the dispersive wave. We demonstrate that such a modification of the dispersive wave can significantly alter the soliton dynamics. In particular, we show that it allows a decrease of the fiber length needed for the best compression and, to some extent, control of the trajectory of the soliton. The mechanism of such an influence is related to the modification of the phase-matching condition between the soliton and dispersive wave.
- ItemFemtosecond Field‐Driven On‐Chip Unidirectional Electronic Currents in Nonadiabatic Tunneling Regime(Weinheim : Wiley VCH, 2021) Shi, Liping; Babushkin, Ihar; Husakou, Anton; Melchert, Oliver; Frank, Bettina; Yi, Juemin; Wetzel, Gustav; Demircan, Ayhan; Lienau, Christoph; Giessen, Harald; Ivanov, Misha; Morgner, Uwe; Kovacev, MilutinRecently, asymmetric plasmonic nanojunctions have shown promise as on-chip electronic devices to convert femtosecond optical pulses to current bursts, with a bandwidth of multi-terahertz scale, although yet at low temperatures and pressures. Such nanoscale devices are of great interest for novel ultrafast electronics and opto-electronic applications. Here, the device is operated in air and at room temperature, revealing the mechanisms of photoemission from plasmonic nanojunctions, and the fundamental limitations on the speed of optical-to-electronic conversion. Inter-cycle interference of coherent electronic wavepackets results in a complex energy electron distribution and birth of multiphoton effects. This energy structure, as well as reshaping of the wavepackets during their propagation from one tip to the other, determine the ultrafast dynamics of the current. It is shown that, up to some level of approximation, the electron flight time is well-determined by the mean ponderomotive velocity in the driving field.
- ItemThe fundamental solution of unidirectional pulse propagation equation(Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Babushkin, IharIn the article the fundamental solution of a variant of the three-dimensional wave equation known as unidirectional pulse propagation equation (UPPE) and its paraxial approximation is obtained. It is shown that the fundamental solution can be presented as a projection of a fundamental solution of the wave equation to some functional subspace. We discuss the degree of equivalence of the UPPE and the wave equation in this respect. In particular, we show that the UPPE, in contrast to the widespread belief, describes the wave propagation in both directions simultaneously, and remark non-causal character of its solutions
- ItemInfluence of tunnel ionization to third-harmonic generation of infrared femtosecond laser pulses in air([London] : Macmillan Publishers Limited, part of Springer Nature, 2020) Tamulienė, Viktorija; Juškevičiūtė, Greta; Buožius, Danas; Vaičaitis, Virgilijus; Babushkin, Ihar; Morgner, UweHere we present an experimental as well as theoretical study of third-harmonic generation in tightly focused femtosecond filaments in air at the wavelength of 1.5μm. At low intensities, longitudinal phase matching is dominating in the formation of 3rd harmonics, whereas at higher intensities locked X-waves are formed. We provide the arguments that the X-wave formation is governed mainly by the tunnel-like ionization dynamics rather than by the multiphoton one. Despite of this fact, the impact of the ionization-induced nonlinearity is lower than the one from bound–bound transitions at all intensities. © 2020, The Author(s).
- ItemNon-Poissonian statistics in an optical analog of quantum billiard with perfectly square boundaries(Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2009) Babushkin, IharWe study deviation from the Poissonian statistics of the frequency spacing distribution, appearing due to coupling of polarizational and transverse degrees of freedom in a perfectly square vertical cavity surface emitting laser. The deviation can be controlled by strength of the intracavity anisotropy and its alignment to the device boundaries.
- ItemOnset of Bloch oscillations in the almost-strong-field regime([London] : Nature Publishing Group UK, 2022-12-13) Reislöhner, Jan; Kim, Doyeong; Babushkin, Ihar; Pfeiffer, Adrian N.In the field of high-order harmonic generation from solids, the electron motion typically exceeds the edge of the first Brillouin zone. In conventional nonlinear optics, on the other hand, the excursion of band electrons is negligible. Here, we investigate the transition from conventional nonlinear optics to the regime where the crystal electrons begin to explore the first Brillouin zone. It is found that the nonlinear optical response changes abruptly already before intraband currents due to ionization become dominant. This is observed by an interference structure in the third-order harmonic generation of few-cycle pulses in a non-collinear geometry. Although approaching Keldysh parameter γ = 1, this is not a strong-field effect in the original sense, because the iterative series still converges and reproduces the interference structure. The change of the nonlinear interband response is attributed to Bloch motion of the reversible (or transient or virtual) population, similar to the Bloch motion of the irreversible (or real) population which affects the intraband currents that have been observed in high-order harmonic generation.
- ItemPolarization properties in the transition from below to above lasing threshold in broad-area vertical-cavity surface-emitting lasers(Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2009) Schulz-Ruhtenberg, Malte; Babushkin, Ihar; Loiko, Natalia Aleksandrovna; Huang, K.F.; Ackemann, T.For highly divergent emission of broad-area vertical-cavity surface-emitting lasers (VCSELs) a rotation of the polarization direction by up to 90 degrees occurs when the pump rate approaches the lasing threshold. Well below threshold the polarization is parallel to the direction of the transverse wave vector and is determined by the transmissive properties of the Bragg reflectors that form the cavity mirrors. In contrast, near-threshold and above-threshold emission is more affected by the reflective properties of the reflectors and is predominantly perpendicular to the direction of transverse wave vectors. Two qualitatively different types of polarization transition are demonstrated: an abrupt transition, where the light polarization vanishes at the point of the transition, and a smooth one, where it is significantly nonzero during the transition.
- ItemPopulation difference gratings created on vibrational transitions by nonoverlapping subcycle THz pulses([London] : Macmillan Publishers Limited, part of Springer Nature, 2021) Arkhipov, Rostislav; Pakhomov, Anton; Arkhipov, Mikhail; Babushkin, Ihar; Demircan, Ayhan; Morgner, Uwe; Rosanov, NikolayWe study theoretically a possibility of creation and ultrafast control (erasing, spatial frequency multiplication) of population density gratings in a multi-level resonant medium having a resonance transition frequency in the THz range. These gratings are produced by subcycle THz pulses coherently interacting with a nonlinear medium, without any need for pulses to overlap, thereby utilizing an indirect pulse interaction via an induced coherent polarization grating. High values of dipole moments of the transitions in the THz range facilitate low field strength of the needed THz excitation. Our results clearly show this possibility in multi-level resonant media. Our theoretical approach is based on an approximate analytical solution of time-dependent Schrödinger equation (TDSE) using perturbation theory. Remarkably, as we show here, quasi-unipolar subcycle pulses allow more efficient excitation of higher quantum levels, leading to gratings with a stronger modulation depth. Numerical simulations, performed for THz resonances of the H20 molecule using Bloch equations for density matrix elements, are in agreement with analytical results in the perturbative regime. In the strong-field non-perturbative regime, the spatial shape of the gratings becomes non-harmonic. A possibility of THz radiation control using such gratings is discussed. The predicted phenomena open novel avenues in THz spectroscopy of molecules with unipolar and quasi-unipolar THz light bursts and allow for better control of ultra-short THz pulses.
- ItemQuasi-phase-matching for third harmonic generation in noble gases employing ultrasound(Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2012) Sapaev, Usman K.; Babushkin, Ihar; Herrmann, JoachimWe study a novel method of quasi-phase-matching for third harmonic generation in a gas cell using the periodic modulation of the gas pressure and thus of the third order nonlinear coefficient in the axial direction created by an ultrasound wave. Using a comprehensive numerical model we describe the quasi-phase matched third harmonic generation of UV (at 266 nm) and VUV pulses (at 133 nm) by using pump pulses at 800 nm and 400 nm, respectively, with pulse energy in the range from 3 mJ to 1 J. In addition, using chirped pump pulses, the generation of sub-20-fs VUV pulses without the necessity for an external chirp compensation is predicted.
- ItemRegularizing aperiodic cycles of resonant radiation in filament light bullets(Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Brée, Carsten; Babushkin, Ihar; Morgner, Uwe; Demircan, AyhanWe demonstrate an up to now unrecognized and very effective mechanism which prevents filament collapse and allows persistent self-guiding propagation retaining larg portion of the optical energy on-axis over unexpected long distances. The key ingredient is the possibility of leaking continuously energy into the normal dispersion regime via emission of resonant radiation. The frequency of the radiation is determined by the dispersion dynamically modified by photo-generated plasma, thus allowing to excite new frequencies in the spectral ranges which are otherwise difficult to access.
- ItemRotational symmetry breaking in small-area circular vertical cavity surface emitting lasers(Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2010) Babushkin, Ihar; Bandelow, Uwe; Vladimirov, AndreiWe investigate theoretically the dynamics of three low-order transverse modes in a small-area vertical cavity surface emitting laser. We demonstrate the breaking of axial symmetry of the transverse field distribution in such a device. In particular, we show that if the linewidth enhancement factor is sufficiently large dynamical regimes with broken axial symmetry can exist up to very high diffusion coefficients 10 um^2/ns.
- ItemScar-like structures and their localization in a perfectly square optical billiard(Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2009) Babushkin, IharWe show that scar-like structures (SLS) in a wide aperture vertical cavity surface emitting laser (VCSEL) can be formed even in a perfectly square geometry due to interaction of polarization and spatial degrees of freedom of light. We show also that dissipation in the system induces an order among the cavity modes, so that SLS become preferred at lasing threshold. More generally, modes which are more localized both in coordinate and momentum space have in average lower losses.
- ItemStability of quantum linear logic circuits against perturbations(Bristol : IOP Publ., 2020) Babushkin, Ihar; Morgner, Uwe; Demircan, AyhanHere we study transformation of waveshapes of photons under the action of the linear logic circuits and other related architectures involving only linear optical networks and measurements. We show that the gates are working well not only in the case when all photons are separable and located in the same mode, but in some more general cases. For instance, the photonic waveshapes are allowed to be slightly different in different channels; in this case, Zeno effect prevents the photons from decoherence after the measurement, and the gate thus remains neutral to the small waveshape perturbations. © 2020 The Author(s). Published by IOP Publishing Ltd Printed in the UK
- ItemStable coherent mode-locking based on π pulse formation in single-section lasers([London] : Macmillan Publishers Limited, part of Springer Nature, 2021) Arkhipov, Rostislav; Pakhomov, Anton; Arkhipov, Mikhail; Babushkin, Ihar; Rosanov, NikolayHere we consider coherent mode-locking (CML) regimes in single-section cavity lasers, taking place for pulse durations less than atomic population and phase relaxation times, which arise due to coherent Rabi oscillations of the atomic inversion. Typically, CML is introduced for lasers with two sections, the gain and absorber ones. Here we show that, for certain combination of the cavity length and relaxation parameters, a very stable CML in a laser, containing only gain section, may arise. The mode-locking is unconditionally self-starting and appears due to balance of intra-pulse de-excitation and slow interpulse-scale pump-induced relaxation processes. We also discuss the scaling of the system to shorter pulse durations, showing a possibility of mode-locking for few-cycle pulses.
- ItemSymmetry breaking and strong persistent plasma currents via resonant destabilization of atoms(Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Brée, Carsten; Hofmann, Michael; Babushkin, Ihar; Demircan, Ayhan; Morgner, Uwe; Kosareva, Olga G.; Savelev, Andrei B.; Husakou, Anton; Ivanov, MishaThe ionization rate of an atom in a strong optical field can be resonantly enhanced by the presence of long-living atomic levels (so called Freeman resonances). This process is most prominent in the multiphoton ionization regime meaning that ionization event takes many optical cycles. Nevertheless, here we show that these resonances can lead to fast subcycle-scale plasma buildup at the resonant values of the intensity in the pump pulse. The fast buildup can break the cycletocycle symmetry of the ionization process, resulting in generation of persistent macroscopic plasma currents which remain after the end of the pulse. This, in turn, gives rise to a broadband radiation of unusual spectral structure forming a comb from terahertz (THz) to visible. This radiation contains fingerprints of the attosecond electronic dynamics in Rydberg states during ionization.
- ItemTailoring THz radiation by controlling tunnel photoionization events in gases(Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2011) Babushkin, Ihar; Skupin, Stefan; Husakou, Anton; Köhler, Christian; Cabrera-Granado, Eduardo; Bergé, Luc; Herrmann, JoachimjApplications ranging from nonlinear terahertz spectroscopy to remote sensing require broadband and intense THz radiation which can be generated by focusing two-color laser pulses into a gas. In this setup, THz radiation originates from the buildup of the electron density in sharp steps of attosecond duration due to tunnel ionization, and subsequent acceleration of free electrons in the laser field. We show that the spectral shape of the THz pulses generated by this mechanism is determined by superposition of contributions from individual ionization events. This provides a straightforward analogy with linear diffraction theory, where the ionization events play the role of slits in a grating. This analogy offers simple explanations for recent experimental observations and opens new avenues for THz pulse shaping based on temporal control of the ionization events. We illustrate this novel technique by tailoring the spectral width and position of the resulting radiation using multi-color pump pulses.