Browsing by Author "Betz, Volker"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemRandom permutations(Oberwolfach : Mathematisches Forschungsinstitut Oberwolfach gGmbH, 2019) Betz, Volker100 people leave their hats at the door at a party and pick up a completely random hat when they leave. How likely is it that at least one of them will get back their own hat? If the hats carry name tags, how difficult is it to arrange for all hats to be returned to their owner? These classical questions of probability theory can be answered relatively easily. But if a geometric component is added, answering the same questions immediately becomes very hard, and little is known about them. We present some of the open questions and give an overview of what current research can say about them.
- ItemScaling limit of ballistic self-avoiding walk interacting with spatial random permutations([Madralin] : EMIS ELibEMS, 2019) Betz, Volker; Taggi, LorenzoWe consider nearest neighbour spatial random permutations on Zd. In this case, the energy of the system is proportional to the sum of all cycle lengths, and the system can be interpreted as an ensemble of edge-weighted, mutually self-avoiding loops. The constant of proportionality, α, is the order parameter of the model. Our first result is that in a parameter regime of edge weights where it is known that a single self-avoiding loop is weakly space filling, long cycles of spatial random permutations are still exponentially unlikely. For our second result, we embed a self-avoiding walk into a background of spatial random permutations, and condition it to cover a macroscopic distance. For large values of α (where long cycles are very unlikely) we show that this walk collapses to a straight line in the scaling limit, and give bounds on the fluctuations that are almost sufficient for diffusive scaling. For proving our results, we develop the concepts of spatial strong Markov property and iterative sampling for spatial random permutations, which may be of independent interest. Among other things, we use them to show exponential decay of correlations for large values of α in great generality.