Browsing by Author "Burlakov, Victor M."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemControlled topological transitions in thin film phase separation(Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Hennessy, Mathew G.; Burlakov, Victor M.; Münch, Andreas; Wagner, Barbara; Goriely, AlainIn this paper the evolution of a binary mixture in a thin-film geometry with a wall at the top and bottom is considered. Bringing the mixture into its miscibility gap so that no spinodal decomposition occurs in the bulk, a slight energetic bias of the walls towards each one of the constituents ensures the nucleation of thin boundary layers that grow until the constituents have moved into one of the two layers. These layers are separated by an interfacial region, where the composition changes rapidly. Conditions that ensure the separation into two layers with a thin interfacial region are investigated based on a phase-field model and using matched asymptotic expansions a corresponding sharp-interface problem for the location of the interface is established. It is then argued that a thus created two-layer system is not at its energetic minimum but destabilizes into a controlled self-replicating pattern of trapezoidal vertical stripes by minimizing the interfacial energy between the phases while conserving their area. A quantitative analysis of this mechanism is carried out via a new thin-film model for the free interfaces, which is derived asymptotically from the sharp-interface model.
- ItemPropagating topological transformations in thin immiscible bilayer films(Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Hennessy, Mathew G.; Burlakov, Victor M.; Münch, Andreas; Wagner, Barbara; Goriely, AlainA physical mechanism for the topological transformation of a two-layer system confined by two substrates is proposed. Initially the two horizontal layers, A and B, are on top of each other, but upon a sufficiently large disturbance, they can rearrange themselves through a spontaneously propagating sectioning to create a sequence of vertical alternating domains ABABAB. This generic topological transformation could be used to control the morphology of fabricated nanocomposites by first creating metastable layered structures and then triggering their transformation. The generality is underscored by formulating conditions for this topological transformation in terms of the interface energies between phases and substrates. The theoretical estimate for the width of the domains is confirmed by simulations of a phase-field model and its thin-film/sharp-interface approximation.