Browsing by Author "Claeyssens, Frederik"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemMapping Nanostructural Variations in Silk by Secondary Electron Hyperspectral Imaging(Weinheim : Wiley-VCH, 2017) Wan, Quan; Abrams, Kerry J.; Masters, Robert C.; Talari, Abdullah C. S.; Rehman, Ihtesham U.; Claeyssens, Frederik; Holland, Chris; Rodenburg, CorneliaNanostructures underpin the excellent properties of silk. Although the bulk nanocomposition of silks is well studied, direct evidence of the spatial variation of nanocrystalline (ordered) and amorphous (disordered) structures remains elusive. Here, secondary electron hyperspectral imaging can be exploited for direct imaging of hierarchical structures in carbon-based materials, which cannot be revealed by any other standard characterization methods. Through applying this technique to silks from domesticated (Bombyx mori) and wild (Antheraea mylitta) silkworms, a variety of previously unseen features are reported, highlighting the local interplay between ordered and disordered structures. This technique is able to differentiate composition on the nanoscale and enables in-depth studies into the relationship between morphology and performance of these complex biopolymer systems.
- ItemUnderstanding Surface Modifications Induced via Argon Plasma Treatment through Secondary Electron Hyperspectral Imaging(Weinheim : Wiley-VCH, 2021) Farr, Nicholas; Thanarak, Jeerawan; Schäfer, Jan; Quade, Antje; Claeyssens, Frederik; Green, Nicola; Rodenburg, CorneliaUnderstanding the effects that sterilization methods have on the surface of a biomaterial is a prerequisite for clinical deployment. Sterilization causes alterations in a material's surface chemistry and surface structures that can result in significant changes to its cellular response. Here we compare surfaces resulting from the application of the industry standard autoclave sterilisation to that of surfaces resulting from the use of low-pressure Argon glow discharge within a novel gas permeable packaging method in order to explore a potential new biomaterial sterilisation method. Material surfaces are assessed by applying secondary electron hyperspectral imaging (SEHI). SEHI is a novel low-voltage scanning electron microscopy based characterization technique that, in addition to capturing topographical images, also provides nanoscale resolution chemical maps by utilizing the energy distribution of emitted secondary electrons. Here, SEHI maps are exploited to assess the lateral distributions of diverse functional groups that are effected by the sterilization treatments. This information combined with a range of conventional surface analysis techniques and a cellular metabolic activity assay reveals persuasive reasons as to why low-pressure argon glow discharge should be considered for further optimization as a potential terminal sterilization method for PGS-M, a functionalized form of poly(glycerol sebacate) (PGS).