Browsing by Author "Elias, Mirette"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- ItemAccessibility and Personalization in OpenCourseWare : An Inclusive Development Approach(Piscataway, NJ : IEEE, 2020) Elias, Mirette; Ruckhaus, Edna; Draffan, E.A.; James, Abi; Suárez-Figueroa, Mari Carmen; Lohmann, Steffen; Khiat, Abderrahmane; Auer, Sören; Chang, Maiga; Sampson, Demetrios G.; Huang, Ronghuai; Hooshyar, Danial; Chen, Nian-Shing; Kinshuk; Pedaste, MargusOpenCourseWare (OCW) has become a desirable source for sharing free educational resources which means there will always be users with differing needs. It is therefore the responsibility of OCW platform developers to consider accessibility as one of their prioritized requirements to ensure ease of use for all, including those with disabilities. However, the main challenge when creating an accessible platform is the ability to address all the different types of barriers that might affect those with a wide range of physical, sensory and cognitive impairments. This article discusses accessibility and personalization strategies and their realisation in the SlideWiki platform, in order to facilitate the development of accessible OCW. Previously, accessibility was seen as a complementary feature that can be tackled in the implementation phase. However, a meaningful integration of accessibility features requires thoughtful consideration during all project phases with active involvement of related stakeholders. The evaluation results and lessons learned from the SlideWiki development process have the potential to assist in the development of other systems that aim for an inclusive approach. © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
- ItemMetadata analysis of open educational resources(New York,NY,United States : Association for Computing Machinery, 2021) Tavakoli, Mohammadreza; Elias, Mirette; Kismihók, Gábor; Auer, Sören; Scheffel, MarenOpen Educational Resources (OERs) are openly licensed educational materials that are widely used for learning. Nowadays, many online learning repositories provide millions of OERs. Therefore, it is exceedingly difficult for learners to find the most appropriate OER among these resources. Subsequently, the precise OER metadata is critical for providing high-quality services such as search and recommendation. Moreover, metadata facilitates the process of automatic OER quality control as the continuously increasing number of OERs makes manual quality control extremely difficult. This work uses the metadata of 8,887 OERs to perform an exploratory data analysis on OER metadata. Accordingly, this work proposes metadata-based scoring and prediction models to anticipate the quality of OERs. Based on the results, our analysis demonstrated that OER metadata and OER content qualities are closely related, as we could detect high-quality OERs with an accuracy of 94.6%. Our model was also evaluated on 884 educational videos from Youtube to show its applicability on other educational repositories.
- ItemAn OER Recommender System Supporting Accessibility Requirements(New York : Association for Computing Machinery, 2020) Elias, Mirette; Tavakoli, Mohammadreza; Lohmann, Steffen; Kismihok, Gabor; Auer, Sören; Gurreiro, Tiago; Nicolau, Hugo; Moffatt, KarynOpen Educational Resources are becoming a significant source of learning that are widely used for various educational purposes and levels. Learners have diverse backgrounds and needs, especially when it comes to learners with accessibility requirements. Persons with disabilities have significantly lower employment rates partly due to the lack of access to education and vocational rehabilitation and training. It is not surprising therefore, that providing high quality OERs that facilitate the self-development towards specific jobs and skills on the labor market in the light of special preferences of learners with disabilities is difficult. In this paper, we introduce a personalized OER recommeder system that considers skills, occupations, and accessibility properties of learners to retrieve the most adequate and high-quality OERs. This is done by: 1) describing the profile of learners with disabilities, 2) collecting and analysing more than 1,500 OERs, 3) filtering OERs based on their accessibility features and predicted quality, and 4) providing personalised OER recommendations for learners according to their accessibility needs. As a result, the OERs retrieved by our method proved to satisfy more accessibility checks than other OERs. Moreover, we evaluated our results with five experts in educating people with visual and cognitive impairments. The evaluation showed that our recommendations are potentially helpful for learners with accessibility needs.
- ItemOntology-Based Representation for Accessible OpenCourseWare Systems(Basel : MDPI Publ., 2018-11-29) Elias, Mirette; Lohmann, Steffen; Auer, SörenOpenCourseWare (OCW) systems have been established to provide open educational resources that are accessible by anyone, including learners with special accessibility needs and preferences. We need to find a formal and interoperable way to describe these preferences in order to use them in OCW systems and retrieve relevant educational resources. This formal representation should use standard accessibility definitions of OCW that can be reused by other OCW systems to represent accessibility concepts. In this article, we present an ontology to represent the accessibility needs of learners with respect to the IMS AfA specifications. The ontology definitions together with rule-based queries are used to retrieve relevant educational resources. Related to this, we developed a user interface component that enables users to create accessibility profiles representing their individual needs and preferences based on our ontology. We evaluated the approach with five examples profiles.
- ItemQuality Prediction of Open Educational Resources A Metadata-based Approach(Piscataway, NJ : IEEE, 2020) Tavakoli, Mohammadreza; Elias, Mirette; Kismihók, Gábor; Auer, Sören; Chang, Maiga; Sampson, Demetrios G.; Huang, Ronghuai; Hooshyar, Danial; Chen, Nian-Shing; Kinshuk; Pedaste, MargusIn the recent decade, online learning environments have accumulated millions of Open Educational Resources (OERs). However, for learners, finding relevant and high quality OERs is a complicated and time-consuming activity. Furthermore, metadata play a key role in offering high quality services such as recommendation and search. Metadata can also be used for automatic OER quality control as, in the light of the continuously increasing number of OERs, manual quality control is getting more and more difficult. In this work, we collected the metadata of 8,887 OERs to perform an exploratory data analysis to observe the effect of quality control on metadata quality. Subsequently, we propose an OER metadata scoring model, and build a metadata-based prediction model to anticipate the quality of OERs. Based on our data and model, we were able to detect high-quality OERs with the F1 score of 94.6%. © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.