Browsing by Author "Ewert, Frank"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- ItemAn AgMIP framework for improved agricultural representation in integrated assessment models(Bristol : IOP Publishing, 2017) Ruane, Alex C.; Rosenzweig, Cynthia; Asseng, Senthold; Boote, Kenneth J.; Elliott, Joshua; Ewert, Frank; Jones, James W.; Martre, Pierre; McDermid, Sonali P.; Müller, Christoph; Snyder, Abigail; Thorburn, Peter J.Integrated assessment models (IAMs) hold great potential to assess how future agricultural systems will be shaped by socioeconomic development, technological innovation, and changing climate conditions. By coupling with climate and crop model emulators, IAMs have the potential to resolve important agricultural feedback loops and identify unintended consequences of socioeconomic development for agricultural systems. Here we propose a framework to develop robust representation of agricultural system responses within IAMs, linking downstream applications with model development and the coordinated evaluation of key climate responses from local to global scales. We survey the strengths and weaknesses of protocol-based assessments linked to the Agricultural Model Intercomparison and Improvement Project (AgMIP), each utilizing multiple sites and models to evaluate crop response to core climate changes including shifts in carbon dioxide concentration, temperature, and water availability, with some studies further exploring how climate responses are affected by nitrogen levels and adaptation in farm systems. Site-based studies with carefully calibrated models encompass the largest number of activities; however they are limited in their ability to capture the full range of global agricultural system diversity. Representative site networks provide more targeted response information than broadly-sampled networks, with limitations stemming from difficulties in covering the diversity of farming systems. Global gridded crop models provide comprehensive coverage, although with large challenges for calibration and quality control of inputs. Diversity in climate responses underscores that crop model emulators must distinguish between regions and farming system while recognizing model uncertainty. Finally, to bridge the gap between bottom-up and top-down approaches we recommend the deployment of a hybrid climate response system employing a representative network of sites to bias-correct comprehensive gridded simulations, opening the door to accelerated development and a broad range of applications.
- ItemClassifying multi-model wheat yield impact response surfaces showing sensitivity to temperature and precipitation change(Amsterdam [u.a.] : Elsevier, 2017) Fronzek, Stefan; Pirttioja, Nina; Carter, Timothy R.; Bindi, Marco; Hoffmann, Holger; Palosuo, Taru; Ruiz-Ramos, Margarita; Tao, Fulu; Trnka, Miroslav; Acutis, Marco; Asseng, Senthold; Baranowski, Piotr; Basso, Bruno; Bodin, Per; Buis, Samuel; Cammarano, Davide; Deligios, Paola; Destain, Marie-France; Dumont, Benjamin; Ewert, Frank; Ferrise, Roberto; François, Louis; Gaiser, Thomas; Hlavinka, Petr; Jacquemin, Ingrid; Kersebaum, Kurt Christian; Kollas, Chris; Krzyszczak, Jaromir; Lorite, Ignacio J.; Minet, Julien; Minguez, M. Ines; Montesino, Manuel; Moriondo, Marco; Müller, Christoph; Nendel, Claas; Öztürk, Isik; Perego, Alessia; Rodríguez, Alfredo; Ruane, Alex C.; Ruget, Françoise; Sanna, Mattia; Semenov, Mikhail A.; Slawinski, Cezary; Stratonovitch, Pierre; Supit, Iwan; Waha, Katharina; Wang, Enli; Wu, Lianhai; Zhao, Zhigan; Rötter, Reimund P.Crop growth simulation models can differ greatly in their treatment of key processes and hence in their response to environmental conditions. Here, we used an ensemble of 26 process-based wheat models applied at sites across a European transect to compare their sensitivity to changes in temperature (−2 to +9°C) and precipitation (−50 to +50%). Model results were analysed by plotting them as impact response surfaces (IRSs), classifying the IRS patterns of individual model simulations, describing these classes and analysing factors that may explain the major differences in model responses. The model ensemble was used to simulate yields of winter and spring wheat at four sites in Finland, Germany and Spain. Results were plotted as IRSs that show changes in yields relative to the baseline with respect to temperature and precipitation. IRSs of 30-year means and selected extreme years were classified using two approaches describing their pattern. The expert diagnostic approach (EDA) combines two aspects of IRS patterns: location of the maximum yield (nine classes) and strength of the yield response with respect to climate (four classes), resulting in a total of 36 combined classes defined using criteria pre-specified by experts. The statistical diagnostic approach (SDA) groups IRSs by comparing their pattern and magnitude, without attempting to interpret these features. It applies a hierarchical clustering method, grouping response patterns using a distance metric that combines the spatial correlation and Euclidian distance between IRS pairs. The two approaches were used to investigate whether different patterns of yield response could be related to different properties of the crop models, specifically their genealogy, calibration and process description. Although no single model property across a large model ensemble was found to explain the integrated yield response to temperature and precipitation perturbations, the application of the EDA and SDA approaches revealed their capability to distinguish: (i) stronger yield responses to precipitation for winter wheat than spring wheat; (ii) differing strengths of response to climate changes for years with anomalous weather conditions compared to period-average conditions; (iii) the influence of site conditions on yield patterns; (iv) similarities in IRS patterns among models with related genealogy; (v) similarities in IRS patterns for models with simpler process descriptions of root growth and water uptake compared to those with more complex descriptions; and (vi) a closer correspondence of IRS patterns in models using partitioning schemes to represent yield formation than in those using a harvest index. Such results can inform future crop modelling studies that seek to exploit the diversity of multi-model ensembles, by distinguishing ensemble members that span a wide range of responses as well as those that display implausible behaviour or strong mutual similarities.
- ItemClimate change impacts on European arable crop yields: Sensitivity to assumptions about rotations and residue management(Amsterdam [u.a.] : Elsevier, 2022) Faye, Babacar; Webber, Heidi; Gaiser, Thomas; Müller, Christoph; Zhang, Yinan; Stella, Tommaso; Latka, Catharina; Reckling, Moritz; Heckelei, Thomas; Helming, Katharina; Ewert, FrankMost large scale studies assessing climate change impacts on crops are performed with simulations of single crops and with annual re-initialization of the initial soil conditions. This is in contrast to the reality that crops are grown in rotations, often with sizable proportion of the preceding crop residue to be left in the fields and varying soil initial conditions from year to year. In this study, the sensitivity of climate change impacts on crop yield and soil organic carbon to assumptions about annual model re-initialization, specification of crop rotations and the amount of residue retained in fields was assessed for seven main crops across Europe. Simulations were conducted for a scenario period 2040–2065 relative to a baseline from 1980 to 2005 using the SIMPLACE1 framework. Results indicated across Europe positive climate change impacts on yield for C3 crops and negative impacts for maize. The consideration of simulating rotations did not have a benefit on yield variability but on relative yield change in response to climate change which slightly increased for C3 crops and decreased for C4 crops when rotation was considered. Soil organic carbon decreased under climate change in both simulations assuming a continuous monocrop and plausible rotations by between 1% and 2% depending on the residue management strategy.
- ItemDiverging importance of drought stress for maize and winter wheat in Europe([London] : Nature Publishing Group UK, 2018) Webber, Heidi; Ewert, Frank; Olesen, Jørgen E.; Müller, Christoph; Fronzek, Stefan; Ruane, Alex C.; Bourgault, Maryse; Martre, Pierre; Ababaei, Behnam; Bindi, Marco; Ferrise, Roberto; Finger, Robert; Fodor, Nándor; Gabaldón-Leal, Clara; Gaiser, Thomas; Jabloun, Mohamed; Kersebaum, Kurt-Christian; Lizaso, Jon I.; Lorite, Ignacio J.; Manceau, Loic; Moriondo, Marco; Nendel, Claas; Rodríguez, Alfredo; Ruiz-Ramos, Margarita; Semenov, Mikhail A.; Siebert, Stefan; Stella, Tommaso; Stratonovitch, Pierre; Trombi, Giacomo; Wallach, DanielUnderstanding the drivers of yield levels under climate change is required to support adaptation planning and respond to changing production risks. This study uses an ensemble of crop models applied on a spatial grid to quantify the contributions of various climatic drivers to past yield variability in grain maize and winter wheat of European cropping systems (1984–2009) and drivers of climate change impacts to 2050. Results reveal that for the current genotypes and mix of irrigated and rainfed production, climate change would lead to yield losses for grain maize and gains for winter wheat. Across Europe, on average heat stress does not increase for either crop in rainfed systems, while drought stress intensifies for maize only. In low-yielding years, drought stress persists as the main driver of losses for both crops, with elevated CO2 offering no yield benefit in these years.
- ItemFAIRagro: Ein Konsortium in der Nationalen Forschungsdateninfrastruktur (NFDI) für Forschungsdaten in der Agrosystemforschung : Herausforderungen und Lösungsansätze für den Aufbau einer FAIRen Forschungsdateninfrastruktur(Berlin, Heidelber, New York : Springer, 2023) Specka, Xenia; Martini, Daniel; Weiland, Claus; Arend, Daniel; Asseng, Senthold; Boehm, Franziska; Feike, Til; Fluck, Juliane; Gackstetter, David; Gonzales-Mellado, Aida; Hartmann, Thomas; Haunert, Jan-Henrik; Hoedt, Florian; Hoffmann, Carsten; König, Patrick; Lange, Matthias; Lesch, Stephan; Lindstädt, Birte; Lischeid, Gunnar; Möller, Markus; Rascher, Uwe; Reif, Jochen Christoph; Schmalzl, Markus; Senft, Matthias; Stahl, Ulrike; Svoboda, Nikolai; Usadel, Björn; Webber, Heidi; Ewert, FrankFAIRagro ist ein Konsortium in der Nationalen Forschungsdateninfrastruktur (NFDI) in Deutschland um Forschungsdaten der Agrosystemforschung FAIR – d. h. auffindbar (F), zugänglich (A), interoperabel (I) und für andere Forschende domänenübergreifend nachnutzbar (R) zu machen. In der deutschen Forschungslandschaft rund um nachhaltige Agrosysteme werden heterogene Forschungsdaten erhoben und nur zum Teil in existierenden Forschungsdatenrepositorien veröffentlicht. Das Spektrum der Datenformate erstreckt sich beispielsweise von Laborergebnissen, über Satellitenbilder bis hin zu qualitativen Interviews mit Landwirt:innen. Um diese Daten zukünftig für Forschende verschiedener Disziplinen besser auffindbar und nachnutzbar zu machen, wird FAIRagro eine Forschungsdateninfrastruktur (FDI) für die Agrosystemforschung einrichten, in der disziplinäre Dateninfrastrukturen miteinander verknüpft werden. Spezifische Herausforderungen im Forschungsdatenmanagement (FDM) fachlicher Disziplinen wie Pflanzenzüchtung, integrierter Pflanzenschutz oder Agrarrobotik werden als Use Cases in FAIRagro adressiert und für diese Lösungen entwickelt. Darüber hinaus wird FAIRagro ein Netzwerk aus direkten Ansprechpersonen für Fragen zum Forschungsdatenmanagement in der Agrosystem-Community bereitstellen. In Übereinstimmung mit den Zielsetzungen der NFDI und der European Open Science Cloud ist FAIRagro aktiv an der konzeptionellen Implementierung eines interoperablen Datenraums beteiligt.
- ItemImpacts of 1.5 versus 2.0 °c on cereal yields in the West African Sudan Savanna(Bristol : IOP Publishing, 2018) Faye, Babacar; Webber, Heidi; Naab, Jesse B.; MacCarthy, Dilys S.; Adam, Myriam; Ewert, Frank; Lamers, John P.A.; Schleussner, Carl-Friedrich; Ruane, Alex; Gessner, Ursula; Hoogenboom, Gerrit; Boote, Ken; Shelia, Vakhtang; Saeed, Fahad; Wisser, Dominik; Hadir, Sofia; Laux, Patrick; Gaiser, ThomasTo reduce the risks of climate change, governments agreed in the Paris Agreement to limit global temperature rise to less than 2.0 °C above pre-industrial levels, with the ambition to keep warming to 1.5 °C. Charting appropriate mitigation responses requires information on the costs of mitigating versus associated damages for the two levels of warming. In this assessment, a critical consideration is the impact on crop yields and yield variability in regions currently challenged by food insecurity. The current study assessed impacts of 1.5 °C versus 2.0 °C on yields of maize, pearl millet and sorghum in the West African Sudan Savanna using two crop models that were calibrated with common varieties from experiments in the region with management reflecting a range of typical sowing windows. As sustainable intensification is promoted in the region for improving food security, simulations were conducted for both current fertilizer use and for an intensification case (fertility not limiting). With current fertilizer use, results indicated 2% units higher losses for maize and sorghum with 2.0 °C compared to 1.5 °C warming, with no change in millet yields for either scenario. In the intensification case, yield losses due to climate change were larger than with current fertilizer levels. However, despite the larger losses, yields were always two to three times higher with intensification, irrespective of the warming scenario. Though yield variability increased with intensification, there was no interaction with warming scenario. Risk and market analysis are needed to extend these results to understand implications for food security.
- ItemQuantifying sustainable intensification of agriculture: The contribution of metrics and modelling(Amsterdam [u.a.] : Elsevier, 2021) Mouratiadou, Ioanna; Latka, Catharina; van der Hilst, Floor; Müller, Christoph; Berges, Regine; Bodirsky, Benjamin Leon; Ewert, Frank; Faye, Babacar; Heckelei, Thomas; Hoffmann, Munir; Lehtonen, Heikki; Lorite, Ignacio Jesus; Nendel, Claas; Palosuo, Taru; Rodríguez, Alfredo; Rötter, Reimund Paul; Ruiz-Ramos, Margarita; Stella, Tommaso; Webber, Heidi; Wicke, BirkaSustainable intensification (SI) of agriculture is a promising strategy for boosting the capacity of the agricultural sector to meet the growing demands for food and non-food products and services in a sustainable manner. Assessing and quantifying the options for SI remains a challenge due to its multiple dimensions and potential associated trade-offs. We contribute to overcoming this challenge by proposing an approach for the ex-ante evaluation of SI options and trade-offs to facilitate decision making in relation to SI. This approach is based on the utilization of a newly developed SI metrics framework (SIMeF) combined with agricultural systems modelling. We present SIMeF and its operationalization approach with modelling and evaluate the approach’s feasibility by assessing to what extent the SIMeF metrics can be quantified by representative agricultural systems models. SIMeF is based on the integration of academic and policy indicator frameworks, expert opinions, as well as the Sustainable Development Goals. Structured along seven SI domains and consisting of 37 themes, 142 sub-themes and 1128 metrics, it offers a holistic, generic, and policy-relevant dashboard for selecting the SI metrics to be quantified for the assessment of SI options in diverse contexts. The use of SIMeF with agricultural systems modelling allows the ex-ante assessment of SI options with respect to their productivity, resource use efficiency, environmental sustainability and, to a large extent, economic sustainability. However, we identify limitations to the use of modelling to represent several SI aspects related to social sustainability, certain ecological functions, the multi-functionality of agriculture, the management of losses and waste, and security and resilience. We suggest advancements in agricultural systems models and greater interdisciplinary and transdisciplinary integration to improve the ability to quantify SI metrics and to assess trade-offs across the various dimensions of SI.