Browsing by Author "Ewerth, Ralph"
Now showing 1 - 20 of 25
Results Per Page
Sort Options
- ItemAnalysing the requirements for an Open Research Knowledge Graph: use cases, quality requirements, and construction strategies(Berlin ; Heidelberg ; New York : Springer, 2021) Brack, Arthur; Hoppe, Anett; Stocker, Markus; Auer, Sören; Ewerth, RalphCurrent science communication has a number of drawbacks and bottlenecks which have been subject of discussion lately: Among others, the rising number of published articles makes it nearly impossible to get a full overview of the state of the art in a certain field, or reproducibility is hampered by fixed-length, document-based publications which normally cannot cover all details of a research work. Recently, several initiatives have proposed knowledge graphs (KG) for organising scientific information as a solution to many of the current issues. The focus of these proposals is, however, usually restricted to very specific use cases. In this paper, we aim to transcend this limited perspective and present a comprehensive analysis of requirements for an Open Research Knowledge Graph (ORKG) by (a) collecting and reviewing daily core tasks of a scientist, (b) establishing their consequential requirements for a KG-based system, (c) identifying overlaps and specificities, and their coverage in current solutions. As a result, we map necessary and desirable requirements for successful KG-based science communication, derive implications, and outline possible solutions.
- Item“Are machines better than humans in image tagging?” - A user study adds to the puzzle(Heidelberg : Springer, 2017) Ewerth, Ralph; Springstein, Matthias; Phan-Vogtmann, Lo An; Schütze, Juliane“Do machines perform better than humans in visual recognition tasks?” Not so long ago, this question would have been considered even somewhat provoking and the answer would have been clear: “No”. In this paper, we present a comparison of human and machine performance with respect to annotation for multimedia retrieval tasks. Going beyond recent crowdsourcing studies in this respect, we also report results of two extensive user studies. In total, 23 participants were asked to annotate more than 1000 images of a benchmark dataset, which is the most comprehensive study in the field so far. Krippendorff’s α is used to measure inter-coder agreement among several coders and the results are compared with the best machine results. The study is preceded by a summary of studies which compared human and machine performance in different visual and auditory recognition tasks. We discuss the results and derive a methodology in order to compare machine performance in multimedia annotation tasks at human level. This allows us to formally answer the question whether a recognition problem can be considered as solved. Finally, we are going to answer the initial question.
- ItemB!SON – Ein offenes Empfehlungssystem für Open-Access-Zeitschriften : Sachbericht zum Verwendungsnachweis : Abschlussbericht des Projekts „Bibliometric and Semantic Open Access Recommender Network [Bibliometrisches und Semantisches Open-Access-Recommender-Netzwerk]“ : Laufzeit: 1.4.2021-31.1.2023 : Teilvorhaben der Technischen Informationsbibliothek (TIB): Implementierung und Qualitätskontrolle des Empfehlungssystems(Hannover : Technische Informationsbibliothek (TIB), 2023) Tullney, Marco; Hoppe, Anett; Ewerth, Ralph; Entrup, Elias; Eppelin, Anita; Schmeja, Stefan[No abstract available]
- ItemB!SON: A Tool for Open Access Journal Recommendation(Heidelberg : Springer, 2022) Entrup, Elias; Eppelin, Anita; Ewerth, Ralph; Hartwig, Josephine; Tullney, Marco; Wohlgemuth, Michael; Hoppe, Anett; Nugent, RonanFinding a suitable open access journal to publish scientific work is a complex task: Researchers have to navigate a constantly growing number of journals, institutional agreements with publishers, funders’ conditions and the risk of Predatory Publishers. To help with these challenges, we introduce a web-based journal recommendation system called B!SON. It is developed based on a systematic requirements analysis, built on open data, gives publisher-independent recommendations and works across domains. It suggests open access journals based on title, abstract and references provided by the user. The recommendation quality has been evaluated using a large test set of 10,000 articles. Development by two German scientific libraries ensures the longevity of the project.
- ItemCheck square at CheckThat! 2020: Claim Detection in Social Media via Fusion of Transformer and Syntactic Features(Aachen, Germany : RWTH Aachen, 2020) Cheema, Gullasl S.; Hakimov, Sherzod; Ewerth, Ralph; Cappellato, Linda; Eickhoff, Carsten; Ferro, Nicola; Névéol, AurélieIn this digital age of news consumption, a news reader has the ability to react, express and share opinions with others in a highly interactive and fast manner. As a consequence, fake news has made its way into our daily life because of very limited capacity to verify news on the Internet by large companies as well as individuals. In this paper, we focus on solving two problems which are part of the fact-checking ecosystem that can help to automate fact-checking of claims in an ever increasing stream of content on social media. For the first prob-lem, claim check-worthiness prediction, we explore the fusion of syntac-tic features and deep transformer Bidirectional Encoder Representations from Transformers (BERT) embeddings, to classify check-worthiness of a tweet, i.e. whether it includes a claim or not. We conduct a detailed feature analysis and present our best performing models for English and Arabic tweets. For the second problem, claim retrieval, we explore the pre-trained embeddings from a Siamese network transformer model (sentence-transformers) specifically trained for semantic textual similar-ity, and perform KD-search to retrieve verified claims with respect to a query tweet.
- ItemClassification of important segments in educational videos using multimodal features(Aachen, Germany : RWTH Aachen, 2020) Ghauri, Junaid Ahmed; Hakimov, Sherzod; Ewerth, Ralph; Conrad, Stefan; Tiddi, IlariaVideos are a commonly-used type of content in learning during Web search. Many e-learning platforms provide quality content, but sometimes educational videos are long and cover many topics. Humans are good in extracting important sec-tions from videos, but it remains a significant challenge for computers. In this paper, we address the problem of assigning importance scores to video segments, that is how much information they contain with respect to the overall topic of an educational video. We present an annotation tool and a new dataset of annotated educational videos collected from popular online learning platforms. Moreover, we propose a multimodal neural architecture that utilizes state-of-the-art audio, visual and textual features. Our experiments investigate the impact of visual and temporal information, as well as the combination of multimodal features on importance prediction.
- ItemCombining Textual Features for the Detection of Hateful and Offensive Language(Aachen, Germany : RWTH Aachen, 2021) Hakimov, Sherzod; Ewerth, Ralph; Mehta, Parth; Mandl, Thomas; Majumder, Prasenjit; Mitra, MandarThe detection of offensive, hateful and profane language has become a critical challenge since many users in social networks are exposed to cyberbullying activities on a daily basis. In this paper, we present an analysis of combining different textual features for the detection of hateful or offensive posts on Twitter. We provide a detailed experimental evaluation to understand the impact of each building block in a neural network architecture. The proposed architecture is evaluated on the English Subtask 1A: Identifying Hate, offensive and profane content from the post datasets of HASOC-2021 dataset under the team name TIB-VA. We compared different variants of the contextual word embeddings combined with the character level embeddings and the encoding of collected hate terms.
- ItemDomain-Independent Extraction of Scientific Concepts from Research Articles(Cham : Springer, 2020) Brack, Arthur; D'Souza, Jennifer; Hoppe, Anett; Auer, Sören; Ewerth, Ralph; Jose, Joemon M.; Yilmaz, Emine; Magalhães, João; Castells, Pablo; Ferro, Nicola; Silva, Mário J.; Martins, FlávioWe examine the novel task of domain-independent scientific concept extraction from abstracts of scholarly articles and present two contributions. First, we suggest a set of generic scientific concepts that have been identified in a systematic annotation process. This set of concepts is utilised to annotate a corpus of scientific abstracts from 10 domains of Science, Technology and Medicine at the phrasal level in a joint effort with domain experts. The resulting dataset is used in a set of benchmark experiments to (a) provide baseline performance for this task, (b) examine the transferability of concepts between domains. Second, we present a state-of-the-art deep learning baseline. Further, we propose the active learning strategy for an optimal selection of instances from among the various domains in our data. The experimental results show that (1) a substantial agreement is achievable by non-experts after consultation with domain experts, (2) the baseline system achieves a fairly high F1 score, (3) active learning enables us to nearly halve the amount of required training data.
- ItemEstimating the information gap between textual and visual representations(New York City : Association for Computing Machinery, 2017) Henning, Christian; Ewerth, RalphPhotos, drawings, figures, etc. supplement textual information in various kinds of media, for example, in web news or scientific pub- lications. In this respect, the intended effect of an image can be quite different, e.g., providing additional information, focusing on certain details of surrounding text, or simply being a general il- lustration of a topic. As a consequence, the semantic correlation between information of different modalities can vary noticeably, too. Moreover, cross-modal interrelations are often hard to describe in a precise way. The variety of possible interrelations of textual and graphical information and the question, how they can be de- scribed and automatically estimated have not been addressed yet by previous work. In this paper, we present several contributions to close this gap. First, we introduce two measures to describe cross- modal interrelations: cross-modal mutual information (CMI) and semantic correlation (SC). Second, a novel approach relying on deep learning is suggested to estimate CMI and SC of textual and visual information. Third, three diverse datasets are leveraged to learn an appropriate deep neural network model for the demanding task. The system has been evaluated on a challenging test set and the experimental results demonstrate the feasibility of the approach.
- ItemA Fair and Comprehensive Comparison of Multimodal Tweet Sentiment Analysis Methods(Ithaka : Cornell University, 2021) Cheema, Gullal S.; Hakimov, Sherzod; Müller-Budack, Eric; Ewerth, RalphOpinion and sentiment analysis is a vital task to characterize subjective information in social media posts. In this paper, we present a comprehensive experimental evaluation and comparison with six state-of-the-art methods, from which we have re-implemented one of them. In addition, we investigate different textual and visual feature embeddings that cover different aspects of the content, as well as the recently introduced multimodal CLIP embeddings. Experimental results are presented for two different publicly available benchmark datasets of tweets and corresponding images. In contrast to the evaluation methodology of previous work, we introduce a reproducible and fair evaluation scheme to make results comparable. Finally, we conduct an error analysis to outline the limitations of the methods and possibilities for the future work.
- ItemA Feature Analysis for Multimodal News Retrieval(Aachen : RWTH, 2020) Tahmasebzadeh, Golsa; Hakimov, Sherzod; Müller-Budack, Eric; Ewerth, RalphContent-based information retrieval is based on the information contained in documents rather than using metadata such as keywords. Most information retrieval methods are either based on text or image. In this paper, we investigate the usefulness of multimodal features for cross-lingual news search in various domains: politics, health, environment, sport, and finance. To this end, we consider five feature types for image and text and compare the performance of the retrieval system using different combinations. Experimental results show that retrieval results can be improved when considering both visual and textual information. In addition, it is observed that among textual features entity overlap outperforms word embeddings, while geolocation embeddings achieve better performance among visual features in the retrieval task.
- ItemA Multimodal Approach for Semantic Patent Image Retrieval(Aachen, Germany : RWTH Aachen, 2021) Pustu-Iren, Kader; Bruns, Gerrit; Ewerth, RalphPatent images such as technical drawings contain valuable information and are frequently used by experts to compare patents. However, current approaches to patent information retrieval are largely focused on textual information. Consequently, we review previous work on patent retrieval with a focus on illustrations in figures. In this paper, we report on work in progress for a novel approach for patent image retrieval that uses deep multimodal features. Scene text spotting and optical character recognition are employed to extract numerals from an image to subsequently identify references to corresponding sentences in the patent document. Furthermore, we use a neural state-of-the-art CLIP model to extract structural features from illustrations and additionally derive textual features from the related patent text using a sentence transformer model. To fuse our multimodal features for similarity search we apply re-ranking according to averaged or maximum scores. In our experiments, we compare the impact of different modalities on the task of similarity search for patent images. The experimental results suggest that patent image retrieval can be successfully performed using the proposed feature sets, while the best results are achieved when combining the features of both modalities.
- ItemMultimodal news analytics using measures of cross-modal entity and context consistency(London : Springer, 2021) Müller-Budack, Eric; Theiner, Jonas; Diering, Sebastian; Idahl, Maximilian; Hakimov, Sherzod; Ewerth, RalphThe World Wide Web has become a popular source to gather information and news. Multimodal information, e.g., supplement text with photographs, is typically used to convey the news more effectively or to attract attention. The photographs can be decorative, depict additional details, but might also contain misleading information. The quantification of the cross-modal consistency of entity representations can assist human assessors’ evaluation of the overall multimodal message. In some cases such measures might give hints to detect fake news, which is an increasingly important topic in today’s society. In this paper, we present a multimodal approach to quantify the entity coherence between image and text in real-world news. Named entity linking is applied to extract persons, locations, and events from news texts. Several measures are suggested to calculate the cross-modal similarity of the entities in text and photograph by exploiting state-of-the-art computer vision approaches. In contrast to previous work, our system automatically acquires example data from the Web and is applicable to real-world news. Moreover, an approach that quantifies contextual image-text relations is introduced. The feasibility is demonstrated on two datasets that cover different languages, topics, and domains.
- ItemOn the effects of spam filtering and incremental learning for web-supervised visual concept classification(New York City : Association for Computing Machinery, 2016) Springstein , Matthias; Ewerth, RalphDeep neural networks have been successfully applied to the task of visual concept classification. However, they require a large number of training examples for learning. Although pre-trained deep neural networks are available for some domains, they usually have to be fine-tuned for an envisaged target domain. Recently, some approaches have been suggested that are aimed at incrementally (or even endlessly) learning visual concepts based on Web data. Since tags of Web images are often noisy, normally some filtering mechanisms are employed in order to remove ``spam'' images that are not appropriate for training. In this paper, we investigate several aspects of a web-supervised system that has to be adapted to another target domain: 1.) the effect of incremental learning, 2.) the effect of spam filtering, and 3.) the behavior of particular concept classes with respect to 1.) and 2.). The experimental results provide some insights under which conditions incremental learning and spam filtering are useful.
- ItemOn the Impact of Features and Classifiers for Measuring Knowledge Gain during Web Search - A Case Study(Aachen, Germany : RWTH Aachen, 2021) Gritz, Wolfgang; Hoppe, Anett; Ewerth, Ralph; Cong, Gao; Ramanath, MayaSearch engines are normally not designed to support human learning intents and processes. The ÿeld of Search as Learning (SAL) aims to investigate the characteristics of a successful Web search with a learning purpose. In this paper, we analyze the impact of text complexity of Web pages on predicting knowledge gain during a search session. For this purpose, we conduct an experimental case study and investigate the in˝uence of several text-based features and classiÿers on the prediction task. We build upon data from a study of related work, where 104 participants were given the task to learn about the formation of lightning and thunder through Web search. We perform an extensive evaluation based on a state-of-the-art approach and extend it with additional features related to textual complexity of Web pages. In contrast to prior work, we perform a systematic search for optimal hyperparameters and show the possible in˝uence of feature selection strategies on the knowledge gain prediction. When using the new set of features, state-of-the-art results are noticeably improved. The results indicate that text complexity of Web pages could be an important feature resource for knowledge gain prediction.
- ItemOn the Role of Images for Analyzing Claims in Social Media(Aachen, Germany : RWTH Aachen, 2021) Cheema, Gullal S.; Hakimov, Sherzod; Müller-Budack, Eric; Ewerth, RalphFake news is a severe problem in social media. In this paper, we present an empirical study on visual, textual, and multimodal models for the tasks of claim, claim check-worthiness, and conspiracy detection, all of which are related to fake news detection. Recent work suggests that images are more influential than text and often appear alongside fake text. To this end, several multimodal models have been proposed in recent years that use images along with text to detect fake news on social media sites like Twitter. However, the role of images is not well understood for claim detection, specifically using transformer-based textual and multimodal models. We investigate state-of-the-art models for images, text (Transformer-based), and multimodal information for four different datasets across two languages to understand the role of images in the task of claim and conspiracy detection.
- ItemA Recommender System For Open Educational Videos Based On Skill Requirements(Ithaca, NY : Cornell University, 2020) Tavakoli, Mohammadreza; Hakimov, Sherzod; Ewerth, Ralph; Kismihók, GáborIn this paper, we suggest a novel method to help learners find relevant open educational videos to master skills demanded on the labour market. We have built a prototype, which 1) applies text classification and text mining methods on job vacancy announcements to match jobs and their required skills; 2) predicts the quality of videos; and 3) creates an open educational video recommender system to suggest personalized learning content to learners. For the first evaluation of this prototype we focused on the area of data science related jobs. Our prototype was evaluated by in-depth, semi-structured interviews. 15 subject matter experts provided feedback to assess how our recommender prototype performs in terms of its objectives, logic, and contribution to learning. More than 250 videos were recommended, and 82.8% of these recommendations were treated as useful by the interviewees. Moreover, interviews revealed that our personalized video recommender system, has the potential to improve the learning experience.
- ItemRequirements Analysis for an Open Research Knowledge Graph(Berlin ; Heidelberg : Springer, 2020) Brack, Arthur; Hoppe, Anett; Stocker, Markus; Auer, Sören; Ewerth, Ralph; Hall, Mark; Merčun, Tanja; Risse, Thomas; Duchateau, FabienCurrent science communication has a number of drawbacks and bottlenecks which have been subject of discussion lately: Among others, the rising number of published articles makes it nearly impossible to get a full overview of the state of the art in a certain field, or reproducibility is hampered by fixed-length, document-based publications which normally cannot cover all details of a research work. Recently, several initiatives have proposed knowledge graphs (KGs) for organising scientific information as a solution to many of the current issues. The focus of these proposals is, however, usually restricted to very specific use cases. In this paper, we aim to transcend this limited perspective by presenting a comprehensive analysis of requirements for an Open Research Knowledge Graph (ORKG) by (a) collecting daily core tasks of a scientist, (b) establishing their consequential requirements for a KG-based system, (c) identifying overlaps and specificities, and their coverage in current solutions. As a result, we map necessary and desirable requirements for successful KG-based science communication, derive implications and outline possible solutions.
- ItemA Review on Recent Advances in Video-based Learning Research: Video Features, Interaction, Tools, and Technologies(Aachen, Germany : RWTH Aachen, 2021) Navarrete, Evelyn; Hoppe, Anett; Ewerth, Ralph; Cong, Gao; Ramanath, MayaHuman learning shifts stronger than ever towards online settings, and especially towards video platforms. There is an abundance of tutorials and lectures covering diverse topics, from fixing a bike to particle physics. While it is advantageous that learning resources are freely available on the Web, the quality of the resources varies a lot. Given the number of available videos, users need algorithmic support in finding helpful and entertaining learning resources. In this paper, we present a review of the recent research literature (2020-2021) on video-based learning. We focus on publications that examine the characteristics of video content, analyze frequently used features and technologies, and, finally, derive conclusions on trends and possible future research directions.
- ItemThe Search as Learning Spaceship: Toward a Comprehensive Model of Psychological and Technological Facets of Search as Learning(Lausanne : Frontiers Research Foundation, 2022) von Hoyer, Johannes; Hoppe, Anett; Kammerer, Yvonne; Otto, Christian; Pardi, Georg; Rokicki, Markus; Yu, Ran; Dietze, Stefan; Ewerth, Ralph; Holtz, PeterUsing a Web search engine is one of today’s most frequent activities. Exploratory search activities which are carried out in order to gain knowledge are conceptualized and denoted as Search as Learning (SAL). In this paper, we introduce a novel framework model which incorporates the perspective of both psychology and computer science to describe the search as learning process by reviewing recent literature. The main entities of the model are the learner who is surrounded by a specific learning context, the interface that mediates between the learner and the information environment, the information retrieval (IR) backend which manages the processes between the interface and the set of Web resources, that is, the collective Web knowledge represented in resources of different modalities. At first, we provide an overview of the current state of the art with regard to the five main entities of our model, before we outline areas of future research to improve our understanding of search as learning processes.