### Browsing by Author "Frutos, Javier de"

Now showing 1 - 2 of 2

###### Results Per Page

###### Sort Options

- ItemGrad-div stabilization for the evolutionary Oseen problem with inf-sup stable finite elements(Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Frutos, Javier de; García-Archilla, Bosco; John, Volker; Novo, JuliaThe approximation of the time-dependent Oseen problem using inf-sup stable mixed finite elements in a Galerkin method with grad-div stabilization is studied. The main goal is to prove that adding a grad-div stabilization term to the Galerkin approximation has a stabilizing effect for small viscosity. Both the continuous-in-time and the fully discrete case (backward Euler method, the two-step BDF, and CrankNicolson schemes) are analyzed. In fact, error bounds are obtained that do not depend on the inverse of the viscosity in the case where the solution is sufficiently smooth. The bounds for the divergence of the velocity as well as for the pressure are optimal. The analysis is based on the use of a specific Stokes projection. Numerical studies support the analytical results
- ItemProjection methods for incompressible flow problems with WENO finite difference schemes(Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2015) Frutos, Javier de; John, Volker; Novo, JuliaWeighted essentially non-oscillatory (WENO) finite difference schemes have been recommended in a competitive study of discretizations for scalar evolutionary convectiondiffusion equations [?]. This paper explores the applicability of these schemes for the simulation of incompressible flows. To this end, WENO schemes are used in several nonincremental and incremental projection methods for the incompressible Navier-Stokes equations. Velocity and pressure are discretized on the same grid. A pressure stabilization Petrov-Galerkin (PSPG) type of stabilization is introduced in the incremental schemes to account for the violation of the discrete inf-sup condition. Algorithmic aspects of the proposed schemes are discussed. The schemes are studied on several examples with different features. It is shown that the WENO finite difference idea can be transferred to the simulation of incompressible flows. Some shortcomings of the methods, which are due to the splitting in projection schemes, become also obvious.