Browsing by Author "Fujimori, Shinichiro"
Now showing 1 - 20 of 26
Results Per Page
Sort Options
- ItemBioenergy technologies in long-run climate change mitigation: results from the EMF-33 study(Dordrecht [u.a.] : Springer Science + Business Media B.V, 2020) Daioglou, Vassilis; Rose, Steven K.; Bauer, Nico; Kitous, Alban; Muratori, Matteo; Sano, Fuminori; Fujimori, Shinichiro; Gidden, Matthew J.; Kato, Etsushi; Keramidas, Kimon; Klein, David; Leblanc, Florian; Tsutsui, Junichi; Wise, Marshal; van Vuuren, Detlef P.Bioenergy is expected to play an important role in long-run climate change mitigation strategies as highlighted by many integrated assessment model (IAM) scenarios. These scenarios, however, also show a very wide range of results, with uncertainty about bioenergy conversion technology deployment and biomass feedstock supply. To date, the underlying differences in model assumptions and parameters for the range of results have not been conveyed. Here we explore the models and results of the 33rd study of the Stanford Energy Modeling Forum to elucidate and explore bioenergy technology specifications and constraints that underlie projected bioenergy outcomes. We first develop and report consistent bioenergy technology characterizations and modeling details. We evaluate the bioenergy technology specifications through a series of analyses—comparison with the literature, model intercomparison, and an assessment of bioenergy technology projected deployments. We find that bioenergy technology coverage and characterization varies substantially across models, spanning different conversion routes, carbon capture and storage opportunities, and technology deployment constraints. Still, the range of technology specification assumptions is largely in line with bottom-up engineering estimates. We then find that variation in bioenergy deployment across models cannot be understood from technology costs alone. Important additional determinants include biomass feedstock costs, the availability and costs of alternative mitigation options in and across end-uses, the availability of carbon dioxide removal possibilities, the speed with which large scale changes in the makeup of energy conversion facilities and integration can take place, and the relative demand for different energy services. © 2020, The Author(s).
- ItemClimate and air quality impacts due to mitigation of non-methane near-term climate forcers(Katlenburg-Lindau : EGU, 2020) Allen, Robert J.; Turnock, Steven; Nabat, Pierre; Neubauer, David; Lohmann, Ulrike; Olivié, Dirk; Oshima, Naga; Michou, Martine; Wu, Tongwen; Zhang, Jie; Takemura, Toshihiko; Schulz, Michael; Tsigaridis, Kostas; Bauer, Susanne E.; Emmons, Louisa; Horowitz, Larry; Naik, Vaishali; van Noije, Twan; Bergman, Tommi; Lamarque, Jean-Francois; Zanis, Prodromos; Tegen, Ina; Westervelt, Daniel M.; Le Sager, Philippe; Good, Peter; Shim, Sungbo; O’Connor, Fiona; Akritidis, Dimitris; Georgoulias, Aristeidis K.; Deushi, Makoto; Sentman, Lori T.; John, Jasmin G.; Fujimori, Shinichiro; Collins, William J.It is important to understand how future environmental policies will impact both climate change and air pollution. Although targeting near-term climate forcers (NTCFs), defined here as aerosols, tropospheric ozone, and precursor gases, should improve air quality, NTCF reductions will also impact climate. Prior assessments of the impact of NTCF mitigation on air quality and climate have been limited. This is related to the idealized nature of some prior studies, simplified treatment of aerosols and chemically reactive gases, as well as a lack of a sufficiently large number of models to quantify model diversity and robust responses. Here, we quantify the 2015-2055 climate and air quality effects of non-methane NTCFs using nine state-of-the-art chemistry-climate model simulations conducted for the Aerosol and Chemistry Model Intercomparison Project (AerChemMIP). Simulations are driven by two future scenarios featuring similar increases in greenhouse gases (GHGs) but with weak (SSP3-7.0) versus strong (SSP3-7.0-lowNTCF) levels of air quality control measures. As SSP3-7.0 lacks climate policy and has the highest levels of NTCFs, our results (e.g., surface warming) represent an upper bound. Unsurprisingly, we find significant improvements in air quality under NTCF mitigation (strong versus weak air quality controls). Surface fine particulate matter (PM2:5) and ozone (O3) decrease by 2:20:32 ugm3 and 4:60:88 ppb, respectively (changes quoted here are for the entire 2015-2055 time period; uncertainty represents the 95% confidence interval), over global land surfaces, with larger reductions in some regions including south and southeast Asia. Non-methane NTCF mitigation, however, leads to additional climate change due to the removal of aerosol which causes a net warming effect, including global mean surface temperature and precipitation increases of 0:250:12K and 0:030:012mmd1, respectively. Similarly, increases in extreme weather indices, including the hottest and wettest days, also occur. Regionally, the largest warming and wetting occurs over Asia, including central and north Asia (0:660:20K and 0:030:02mmd1), south Asia (0:470:16K and 0:170:09mmd1), and east Asia (0:460:20K and 0:150:06mmd1). Relatively large warming and wetting of the Arctic also occur at 0:590:36K and 0:040:02mmd1, respectively. Similar surface warming occurs in model simulations with aerosol-only mitigation, implying weak cooling due to ozone reductions. Our findings suggest that future policies that aggressively target non-methane NTCF reductions will improve air quality but will lead to additional surface warming, particularly in Asia and the Arctic. Policies that address other NTCFs including methane, as well as carbon dioxide emissions, must also be adopted to meet climate mitigation goals. © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.
- ItemCorrigendum: Air quality and health implications of 1.5 °C–2 °C climate pathways under considerations of ageing population: a multi-model scenario analysis (2021 Environ. Res. Lett. 16 045005)(Bristol : IOP Publ., 2021) Rafaj, Peter; Kiesewetter, Gregor; Krey, Volker; Schoepp, Wolfgang; Bertram, Christoph; Drouet, Laurent; Fricko, Oliver; Fujimori, Shinichiro; Harmsen, Mathijs; Hilaire, Jérôme; Huppmann, Daniel; Klimont, Zbigniew; Kolp, Peter; Aleluia Reis, Lara; van Vuuren, DetlefWe have identified an error in the text of section 3.3 where the health co-benefits of 1.5 °C + MFR scenario in the whole of Asia are compared to the reference. In the last paragraph of the section 3.3 (page 11), the manuscript states that 'Across the Asia domain, this reduction is approximately 2.5-3 million cases or 40%-51% depending on the IAM used'. Unfortunately, the numbers quoted here were accidentally taken from a sensitivity analysis using different integrated exposure-response curves (GBD-2010, obtained from Global Burden of Disease Collaborative Network 2013), which have not been used in the results shown in the paper-our results are based on the GBD-2013 version, reported by Forouzanfar et al (2015). The correct statement is: 'Across the Asia domain, this reduction is approximately 1.2-1.5 million cases or 33%-42% depending on the IAM used'. The same correction applies to the statement in the Conclusions section 5 (4th paragraph, page 14), which should read: 'The 1.5 °C + MFR scenario decreases premature deaths by 33%-42% across Asia, compared to NPi'.
- ItemEarly retirement of power plants in climate mitigation scenarios(Bristol : IOP Publ., 2020) Fofrich, Robert; Tong, Dan; Calvin, Katherine; De Boer, Harmen Sytze; Emmerling, Johannes; Fricko, Oliver; Fujimori, Shinichiro; Luderer, Gunnar; Rogelj, Joeri; Davis, Steven J.International efforts to avoid dangerous climate change aim for large and rapid reductions of fossil fuel CO2 emissions worldwide, including nearly complete decarbonization of the electric power sector. However, achieving such rapid reductions may depend on early retirement of coal- and natural gas-fired power plants. Here, we analyze future fossil fuel electricity demand in 171 energy-emissions scenarios from Integrated Assessment Models (IAMs), evaluating the implicit retirements and/or reduced operation of generating infrastructure. Although IAMs calculate retirements endogenously, the structure and methods of each model differ; we use a standard approach to infer retirements in outputs from all six major IAMs and—unlike the IAMs themselves—we begin with the age distribution and region-specific operating capacities of the existing power fleet. We find that coal-fired power plants in scenarios consistent with international climate targets (i.e. keeping global warming well-below 2 °C or 1.5 °C) retire one to three decades earlier than historically has been the case. If plants are built to meet projected fossil electricity demand and instead allowed to operate at the level and over the lifetimes they have historically, the roughly 200 Gt CO2 of additional emissions this century would be incompatible with keeping global warming well-below 2 °C. Thus, ambitious climate mitigation scenarios entail drastic, and perhaps un-appreciated, changes in the operating and/or retirement schedules of power infrastructure.
- ItemEnhancing global climate policy ambition towards a 1.5 °c stabilization: A short-term multi-model assessment(Bristol : IOP Publishing, 2018) Vrontisi, Zoi; Luderer, Gunnar; Saveyn, Bert; Keramidas, Kimon; Lara, Aleluia Reis; Baumstark, Lavinia; Bertram, Christoph; de Boer, Harmen Sytze; Drouet, Laurent; Fragkiadakis, Kostas; Fricko, Oliver; Fujimori, Shinichiro; Guivarch, Celine; Kitous, Alban; Krey, Volker; Kriegler, Elmar; Broin, Eoin Ó.; Paroussos, Leonidas; van Vuuren, DetlefThe Paris Agreement is a milestone in international climate policy as it establishes a global mitigation framework towards 2030 and sets the ground for a potential 1.5 °C climate stabilization. To provide useful insights for the 2018 UNFCCC Talanoa facilitative dialogue, we use eight state-of-the-art climate-energy-economy models to assess the effectiveness of the Intended Nationally Determined Contributions (INDCs) in meeting high probability 1.5 and 2 °C stabilization goals. We estimate that the implementation of conditional INDCs in 2030 leaves an emissions gap from least cost 2 °C and 1.5 °C pathways for year 2030 equal to 15.6 (9.0–20.3) and 24.6 (18.5–29.0) GtCO2eq respectively. The immediate transition to a more efficient and low-carbon energy system is key to achieving the Paris goals. The decarbonization of the power supply sector delivers half of total CO2 emission reductions in all scenarios, primarily through high penetration of renewables and energy efficiency improvements. In combination with an increased electrification of final energy demand, low-carbon power supply is the main short-term abatement option. We find that the global macroeconomic cost of mitigation efforts does not reduce the 2020–2030 annual GDP growth rates in any model more than 0.1 percentage points in the INDC or 0.3 and 0.5 in the 2 °C and 1.5 °C scenarios respectively even without accounting for potential co-benefits and avoided climate damages. Accordingly, the median GDP reductions across all models in 2030 are 0.4%, 1.2% and 3.3% of reference GDP for each respective scenario. Costs go up with increasing mitigation efforts but a fragmented action, as implied by the INDCs, results in higher costs per unit of abated emissions. On a regional level, the cost distribution is different across scenarios while fossil fuel exporters see the highest GDP reductions in all INDC, 2 °C and 1.5 °C scenarios.
- ItemFood security under high bioenergy demand toward long-term climate goals(Dordrecht [u.a.] : Springer Science + Business Media B.V, 2020) Hasegawa, Tomoko; Sands, Ronald D.; Brunelle, Thierry; Cui, Yiyun; Frank, Stefan; Fujimori, Shinichiro; Popp, AlexanderBioenergy is expected to play an important role in the achievement of stringent climate-change mitigation targets requiring the application of negative emissions technology. Using a multi-model framework, we assess the effects of high bioenergy demand on global food production, food security, and competition for agricultural land. Various scenarios simulate global bioenergy demands of 100, 200, 300, and 400 exajoules (EJ) by 2100, with and without a carbon price. Six global energy-economy-agriculture models contribute to this study, with different methodologies and technologies used for bioenergy supply and greenhouse-gas mitigation options for agriculture. We find that the large-scale use of bioenergy, if not implemented properly, would raise food prices and increase the number of people at risk of hunger in many areas of the world. For example, an increase in global bioenergy demand from 200 to 300 EJ causes a − 11% to + 40% change in food crop prices and decreases food consumption from − 45 to − 2 kcal person−1 day−1, leading to an additional 0 to 25 million people at risk of hunger compared with the case of no bioenergy demand (90th percentile range across models). This risk does not rule out the intensive use of bioenergy but shows the importance of its careful implementation, potentially including regulations that protect cropland for food production or for the use of bioenergy feedstock on land that is not competitive with food production. © 2020, The Author(s).
- ItemFossil-fueled development (SSP5): An energy and resource intensive scenario for the 21st century(Amsterdam : Elsevier, 2016) Kriegler, Elmar; Bauer, Nico; Popp, Alexander; Humpenöder, Florian; Leimbach, Marian; Strefler, Jessica; Baumstark, Lavinia; Bodirsky, Benjamin Leon; Hilaire, Jérôme; Klein, David; Mouratiadou, Ioanna; Weindl, Isabelle; Bertram, Christoph; Dietrich, Jan-Philipp; Luderer, Gunnar; Pehl, Michaja; Pietzcker, Robert; Piontek, Franziska; Lotze-Campen, Hermann; Biewald, Anne; Bonsch, Markus; Giannousakis, Anastasis; Kreidenweis, Ulrich; Müller, Christoph; Rolinski, Susanne; Schultes, Anselm; Schwanitz, Jana; Stevanovic, Miodrag; Calvin, Katherine; Emmerling, Johannes; Fujimori, Shinichiro; Edenhofer, OttmarThis paper presents a set of energy and resource intensive scenarios based on the concept of Shared Socio-Economic Pathways (SSPs). The scenario family is characterized by rapid and fossil-fueled development with high socio-economic challenges to mitigation and low socio-economic challenges to adaptation (SSP5). A special focus is placed on the SSP5 marker scenario developed by the REMIND-MAgPIE integrated assessment modeling framework. The SSP5 baseline scenarios exhibit very high levels of fossil fuel use, up to a doubling of global food demand, and up to a tripling of energy demand and greenhouse gas emissions over the course of the century, marking the upper end of the scenario literature in several dimensions. These scenarios are currently the only SSP scenarios that result in a radiative forcing pathway as high as the highest Representative Concentration Pathway (RCP8.5). This paper further investigates the direct impact of mitigation policies on the SSP5 energy, land and emissions dynamics confirming high socio-economic challenges to mitigation in SSP5. Nonetheless, mitigation policies reaching climate forcing levels as low as in the lowest Representative Concentration Pathway (RCP2.6) are accessible in SSP5. The SSP5 scenarios presented in this paper aim to provide useful reference points for future climate change, climate impact, adaption and mitigation analysis, and broader questions of sustainable development.
- ItemFuture air pollution in the Shared Socio-economic Pathways(Amsterdam : Elsevier, 2016) Rao, Shilpa; Klimont, Zbigniew; Smith, Steven J.; Van Dingenen, Rita; Dentener, Frank; Bouwman, Lex; Riahi, Keywan; Amann, Markus; Bodirsky, Benjamin Leon; van Vuuren, Detlef P.; Aleluia Reis, Lara; Calvin, Katherine; Drouet, Laurent; Fricko, Oliver; Fujimori, Shinichiro; Gernaat, David; Havlik, Petr; Harmsen, Mathijs; Hasegawa, Tomoko; Heyes, Chris; Hilaire, Jérôme; Luderer, Gunnar; Masui, Toshihiko; Stehfest, Elke; Strefler, Jessica; van der Sluis, Sietske; Tavoni, MassimoEmissions of air pollutants such as sulfur and nitrogen oxides and particulates have significant health impacts as well as effects on natural and anthropogenic ecosystems. These same emissions also can change atmospheric chemistry and the planetary energy balance, thereby impacting global and regional climate. Long-term scenarios for air pollutant emissions are needed as inputs to global climate and chemistry models, and for analysis linking air pollutant impacts across sectors. In this paper we present methodology and results for air pollutant emissions in Shared Socioeconomic Pathways (SSP) scenarios. We first present a set of three air pollution narratives that describe high, central, and low pollution control ambitions over the 21st century. These narratives are then translated into quantitative guidance for use in integrated assessment models. The resulting pollutant emission trajectories under the SSP scenarios cover a wider range than the scenarios used in previous international climate model comparisons. In the SSP3 and SSP4 scenarios, where economic, institutional and technological limitations slow air quality improvements, global pollutant emissions over the 21st century can be comparable to current levels. Pollutant emissions in the SSP1 scenarios fall to low levels due to the assumption of technological advances and successful global action to control emissions.
- ItemGlobal emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century(Katlenburg-Lindau : Copernicus, 2019) Gidden, Matthew J.; Riahi, Keywan; Smith, Steven J.; Fujimori, Shinichiro; Luderer, Gunnar; Kriegler, Elmar; van Vuuren, Detlef P.; van den Berg, Maarten; Feng, Leyang; Klein, David; Calvin, Katherine; Doelman, Jonathan C.; Frank, Stefan; Fricko, Oliver; Harmsen, Mathijs; Hasegawa, Tomoko; Havlik, Petr; Hilaire, Jérôme; Hoesly, Rachel; Horing, Jill; Popp, Alexander; Stehfest, Elke; Takahashi, KiyoshiWe present a suite of nine scenarios of future emissions trajectories of anthropogenic sources, a key deliverable of the ScenarioMIP experiment within CMIP6. Integrated assessment model results for 14 different emissions species and 13 emissions sectors are provided for each scenario with consistent transitions from the historical data used in CMIP6 to future trajectories using automated harmonization before being downscaled to provide higher emissions source spatial detail. We find that the scenarios span a wide range of end-of-century radiative forcing values, thus making this set of scenarios ideal for exploring a variety of warming pathways. The set of scenarios is bounded on the low end by a 1.9 W m−2 scenario, ideal for analyzing a world with end-of-century temperatures well below 2 ∘C, and on the high end by a 8.5 W m−2 scenario, resulting in an increase in warming of nearly 5 ∘C over pre-industrial levels. Between these two extremes, scenarios are provided such that differences between forcing outcomes provide statistically significant regional temperature outcomes to maximize their usefulness for downstream experiments within CMIP6. A wide range of scenario
- ItemHarmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6(Katlenburg-Lindau : Copernicus, 2020) Hurtt, George C.; Chini, Louise; Sahajpal, Ritvik; Frolking, Steve; Bodirsky, Benjamin L.; Calvin, Katherine; Doelman, Jonathan C.; Fisk, Justin; Fujimori, Shinichiro; Klein Goldewijk, Kees; Hasegawa, Tomoko; Havlik, Peter; Heinimann, Andreas; Humpenöder, Florian; Jungclaus, Johan; Kaplan, Jed O.; Kennedy, Jennifer; Krisztin, Tamás; Lawrence, David; Lawrence, Peter; Ma, Lei; Mertz, Ole; Pongratz, Julia; Popp, Alexander; Poulter, Benjamin; Riahi, Keywan; Shevliakova, Elena; Stehfest, Elke; Thornton, Peter; Tubiello, Francesco N.; van Vuuren, Detlef P.; Zhang, XinHuman land use activities have resulted in large changes to the biogeochemical and biophysical properties of the Earth's surface, with consequences for climate and other ecosystem services. In the future, land use activities are likely to expand and/or intensify further to meet growing demands for food, fiber, and energy. As part of the World Climate Research Program Coupled Model Intercomparison Project (CMIP6), the international community has developed the next generation of advanced Earth system models (ESMs) to estimate the combined effects of human activities (e.g., land use and fossil fuel emissions) on the carbon–climate system. A new set of historical data based on the History of the Global Environment database (HYDE), and multiple alternative scenarios of the future (2015–2100) from Integrated Assessment Model (IAM) teams, is required as input for these models. With most ESM simulations for CMIP6 now completed, it is important to document the land use patterns used by those simulations. Here we present results from the Land-Use Harmonization 2 (LUH2) project, which smoothly connects updated historical reconstructions of land use with eight new future projections in the format required for ESMs. The harmonization strategy estimates the fractional land use patterns, underlying land use transitions, key agricultural management information, and resulting secondary lands annually, while minimizing the differences between the end of the historical reconstruction and IAM initial conditions and preserving changes depicted by the IAMs in the future. The new approach builds on a similar effort from CMIP5 and is now provided at higher resolution (0.25∘×0.25∘) over a longer time domain (850–2100, with extensions to 2300) with more detail (including multiple crop and pasture types and associated management practices) using more input datasets (including Landsat remote sensing data) and updated algorithms (wood harvest and shifting cultivation); it is assessed via a new diagnostic package. The new LUH2 products contain > 50 times the information content of the datasets used in CMIP5 and are designed to enable new and improved estimates of the combined effects of land use on the global carbon–climate system.
- ItemImpact of methane and black carbon mitigation on forcing and temperature: a multi-model scenario analysis(Dordrecht [u.a.] : Springer Science + Business Media B.V, 2020) Smith, Steven J.; Chateau, Jean; Dorheim, Kalyn; Drouet, Laurent; Durand-Lasserve, Olivier; Fricko, Oliver; Fujimori, Shinichiro; Hanaoka, Tatsuya; Harmsen, Mathijs; Hilaire, Jérôme; Keramidas, Kimon; Klimont, Zbigniew; Luderer, Gunnar; Moura, Maria Cecilia P.; Riahi, Keywan; Rogelj, Joeri; Sano, Fuminori; van Vuuren, Detlef P.; Wada, KenichiThe relatively short atmospheric lifetimes of methane (CH4) and black carbon (BC) have focused attention on the potential for reducing anthropogenic climate change by reducing Short-Lived Climate Forcer (SLCF) emissions. This paper examines radiative forcing and global mean temperature results from the Energy Modeling Forum (EMF)-30 multi-model suite of scenarios addressing CH4 and BC mitigation, the two major short-lived climate forcers. Central estimates of temperature reductions in 2040 from an idealized scenario focused on reductions in methane and black carbon emissions ranged from 0.18–0.26 °C across the nine participating models. Reductions in methane emissions drive 60% or more of these temperature reductions by 2040, although the methane impact also depends on auxiliary reductions that depend on the economic structure of the model. Climate model parameter uncertainty has a large impact on results, with SLCF reductions resulting in as much as 0.3–0.7 °C by 2040. We find that the substantial overlap between a SLCF-focused policy and a stringent and comprehensive climate policy that reduces greenhouse gas emissions means that additional SLCF emission reductions result in, at most, a small additional benefit of ~ 0.1 °C in the 2030–2040 time frame. © 2020, Battelle Memorial Institute.
- ItemImplications of climate change mitigation strategies on international bioenergy trade(Dordrecht [u.a.] : Springer Science + Business Media B.V, 2020) Daioglou, Vassilis; Muratori, Matteo; Lamers, Patrick; Fujimori, Shinichiro; Kitous, Alban; Köberle, Alexandre C.; Bauer, Nico; Junginger, Martin; Kato, Etsushi; Leblanc, Florian; Mima, Silvana; Wise, Marshal; van Vuuren, Detlef P.Most climate change mitigation scenarios rely on increased use of bioenergy to decarbonize the energy system. Here we use results from the 33rd Energy Modeling Forum study (EMF-33) to investigate projected international bioenergy trade for different integrated assessment models across several climate change mitigation scenarios. Results show that in scenarios with no climate policy, international bioenergy trade is likely to increase over time, and becomes even more important when climate targets are set. More stringent climate targets, however, do not necessarily imply greater bioenergy trade compared to weaker targets, as final energy demand may be reduced. However, the scaling up of bioenergy trade happens sooner and at a faster rate with increasing climate target stringency. Across models, for a scenario likely to achieve a 2 °C target, 10–45 EJ/year out of a total global bioenergy consumption of 72–214 EJ/year are expected to be traded across nine world regions by 2050. While this projection is greater than the present trade volumes of coal or natural gas, it remains below the present trade of crude oil. This growth in bioenergy trade largely replaces the trade in fossil fuels (especially oil) which is projected to decrease significantly over the twenty-first century. As climate change mitigation scenarios often show diversified energy systems, in which numerous world regions can act as bioenergy suppliers, the projections do not necessarily lead to energy security concerns. Nonetheless, rapid growth in the trade of bioenergy is projected in strict climate mitigation scenarios, raising questions about infrastructure, logistics, financing options, and global standards for bioenergy production and trade. © 2020, The Author(s).
- ItemIntegrated Solutions for the Water-Energy-Land Nexus: Are Global Models Rising to the Challenge?(Basel : MDPI, 2019) Johnson, Nils; Burek, Peter; Byers, Edward; Falchetta, Giacomo; Flörke, Martina; Fujimori, Shinichiro; Havlik, Petr; Hejazi, Mohamad; Hunt, Julian; Krey, Volker; Langan, Simon; Nakicenovic, Nebojsa; Palazzo, Amanda; Popp, Alexander; Riahi, Keywan; van Dijk, Michiel; van Vliet, Michelle; van Vuuren, Detlef; Wada, Yoshihide; Wiberg, David; Willaarts, Barbara; Zimm, Caroline; Parkinson, SimonIncreasing human demands for water, energy, food and materials, are expected to accentuate resource supply challenges over the coming decades. Experience suggests that long-term strategies for a single sector could yield both trade-offs and synergies for other sectors. Thus, long-term transition pathways for linked resource systems should be informed using nexus approaches. Global integrated assessment models can represent the synergies and trade-offs inherent in the exploitation of water, energy and land (WEL) resources, including the impacts of international trade and climate policies. In this study, we review the current state-of-the-science in global integrated assessment modeling with an emphasis on how models have incorporated integrated WEL solutions. A large-scale assessment of the relevant literature was performed using online databases and structured keyword search queries. The results point to the following main opportunities for future research and model development: (1) improving the temporal and spatial resolution of economic models for the energy and water sectors; (2) balancing energy and land requirements across sectors; (3) integrated representation of the role of distribution infrastructure in alleviating resource challenges; (4) modeling of solution impacts on downstream environmental quality; (5) improved representation of the implementation challenges stemming from regional financial and institutional capacity; (6) enabling dynamic multi-sectoral vulnerability and adaptation needs assessment; and (7) the development of fully-coupled assessment frameworks based on consistent, scalable, and regionally-transferable platforms. Improved database management and computational power are needed to address many of these modeling challenges at a global-scale.
- ItemKey determinants of global land-use projections([London] : Nature Publishing Group UK, 2019) Stehfest, Elke; van Zeist, Willem-Jan; Valin, Hugo; Havlik, Petr; Popp, Alexander; Kyle, Page; Tabeau, Andrzej; Mason-D’Croz, Daniel; Hasegawa, Tomoko; Bodirsky, Benjamin L.; Calvin, Katherine; Doelman, Jonathan C.; Fujimori, Shinichiro; Humpenöder, Florian; Lotze-Campen, Hermann; van Meijl, Hans; Wiebe, KeithLand use is at the core of various sustainable development goals. Long-term climate foresight studies have structured their recent analyses around five socio-economic pathways (SSPs), with consistent storylines of future macroeconomic and societal developments; however, model quantification of these scenarios shows substantial heterogeneity in land-use projections. Here we build on a recently developed sensitivity approach to identify how future land use depends on six distinct socio-economic drivers (population, wealth, consumption preferences, agricultural productivity, land-use regulation, and trade) and their interactions. Spread across models arises mostly from diverging sensitivities to long-term drivers and from various representations of land-use regulation and trade, calling for reconciliation efforts and more empirical research. Most influential determinants for future cropland and pasture extent are population and agricultural efficiency. Furthermore, land-use regulation and consumption changes can play a key role in reducing both land use and food-security risks, and need to be central elements in sustainable development strategies.
- ItemLand-use futures in the shared socio-economic pathways(Amsterdam [u.a.] : Elsevier, 2017) Popp, Alexander; Calvin, Katherine; Fujimori, Shinichiro; Havlik, Petr; Humpenöder, Florian; Stehfest, Elke; Bodirsky, Benjamin Leon; Dietrich, Jan Philipp; Doelmann, Jonathan C.; Gusti, Mykola; Hasegawa, Tomoko; Kyle, Page; Obersteiner, Michael; Tabeau, Andrzej; Takahashi, Kiyoshi; Valin, Hugo; Waldhoff, Stephanie; Weindl, Isabelle; Wise, Marshall; Kriegler, Elmar; Lotze-Campen, Hermann; Fricko, Oliver; Riahi, Keywan; Vuuren, Detlef P. vanIn the future, the land system will be facing new intersecting challenges. While food demand, especially for resource-intensive livestock based commodities, is expected to increase, the terrestrial system has large potentials for climate change mitigation through improved agricultural management, providing biomass for bioenergy, and conserving or even enhancing carbon stocks of ecosystems. However, uncertainties in future socio-economic land use drivers may result in very different land-use dynamics and consequences for land-based ecosystem services. This is the first study with a systematic interpretation of the Shared Socio-Economic Pathways (SSPs) in terms of possible land-use changes and their consequences for the agricultural system, food provision and prices as well as greenhouse gas emissions. Therefore, five alternative Integrated Assessment Models with distinctive land-use modules have been used for the translation of the SSP narratives into quantitative projections. The model results reflect the general storylines of the SSPs and indicate a broad range of potential land-use futures with global agricultural land of 4900 mio ha in 2005 decreasing by 743 mio ha until 2100 at the lower (SSP1) and increasing by 1080 mio ha (SSP3) at the upper end. Greenhouse gas emissions from land use and land use change, as a direct outcome of these diverse land-use dynamics, and agricultural production systems differ strongly across SSPs (e.g. cumulative land use change emissions between 2005 and 2100 range from −54 to 402 Gt CO2). The inclusion of land-based mitigation efforts, particularly those in the most ambitious mitigation scenarios, further broadens the range of potential land futures and can strongly affect greenhouse gas dynamics and food prices. In general, it can be concluded that low demand for agricultural commodities, rapid growth in agricultural productivity and globalized trade, all most pronounced in a SSP1 world, have the potential to enhance the extent of natural ecosystems, lead to lowest greenhouse gas emissions from the land system and decrease food prices over time. The SSP-based land use pathways presented in this paper aim at supporting future climate research and provide the basis for further regional integrated assessments, biodiversity research and climate impact analysis. © 2016 The Authors
- ItemLimiting global warming to 1.5 °C will lower increases in inequalities of four hazard indicators of climate change(Bristol : IOP Publ., 2019) Shiogama, Hideo; Hasegawa, Tomoko; Fujimori, Shinichiro; Murakami, Daisuke; Takahashi, Kiyoshi; Tanaka, Katsumasa; Emori, Seita; Kubota, Izumi; Abe, Manabu; Imada, Yukiko; Watanabe, Masahiro; Mitchell, Daniel; Schaller, Nathalie; Sillmann, Jana; Fischer, Erich M.; Scinocca, John F.; Bethke, Ingo; Lierhammer, Ludwig; Takakura, Jun’ya; Trautmann, Tim; Döll, Petra; Ostberg, Sebastian; Müller Schmied, Hannes; Saeed, Fahad; Schleussner, Carl-FriedrichClarifying characteristics of hazards and risks of climate change at 2 °C and 1.5 °C global warming is important for understanding the implications of the Paris Agreement. We perform and analyze large ensembles of 2 °C and 1.5 °C warming simulations. In the 2 °C runs, we find substantial increases in extreme hot days, heavy rainfalls, high streamflow and labor capacity reduction related to heat stress. For example, about half of the world's population is projected to experience a present day 1-in-10 year hot day event every other year at 2 °C warming. The regions with relatively large increases of these four hazard indicators coincide with countries characterized by small CO2 emissions, low-income and high vulnerability. Limiting global warming to 1.5 °C, compared to 2 °C, is projected to lower increases in the four hazard indicators especially in those regions.
- ItemLooking under the hood: A comparison of techno-economic assumptions across national and global integrated assessment models(Amsterdam [u.a.] : Elsevier Science, 2018) Krey, Volker; Guo, Fei; Kolp, Peter; Zhou, Wenji; Schaeffer, Roberto; Awasthy, Aayushi; Bertram, Christoph; de Boer, Harmen-Sytze; Fragkos, Panagiotis; Fujimori, Shinichiro; He, Chenmin; Iyer, Gokul; Keramidas, Kimon; Köberle, Alexandre C.; Oshiro, Ken; Reis, Lara Aleluia; Shoai-Tehrani, Bianka; Vishwanathan, Saritha; Capros, Pantelis; Drouet, Laurent; Edmonds, James E.; Garg, Amit; Gernaat, David E.H.J.; Jiang, Kejun; Kannavou, Maria; Kitous, Alban; Kriegler, Elmar; Luderer, Gunnar; Mathur, Ritu; Muratori, Matteo; Sano, Fuminori; van Vuuren, Detlef P.Integrated assessment models are extensively used in the analysis of climate change mitigation and are informing national decision makers as well as contribute to international scientific assessments. This paper conducts a comprehensive review of techno-economic assumptions in the electricity sector among fifteen different global and national integrated assessment models. Particular focus is given to six major economies in the world: Brazil, China, the EU, India, Japan and the US. The comparison reveals that techno-economic characteristics are quite different across integrated assessment models, both for the base year and future years. It is, however, important to recognize that techno-economic assessments from the literature exhibit an equally large range of parameters as the integrated assessment models reviewed. Beyond numerical differences, the representation of technologies also differs among models, which needs to be taken into account when comparing numerical parameters. While desirable, it seems difficult to fully harmonize techno-economic parameters across a broader range of models due to structural differences in the representation of technology. Therefore, making techno-economic parameters available in the future, together with of the technology representation as well as the exact definitions of the parameters should become the standard approach as it allows an open discussion of appropriate assumptions. © 2019 The Authors
- ItemMid-century emission pathways in Japan associated with the global 2 °C goal: national and globalmodels’ assessments based on carbon budgets(Dordrecht [u.a.] : Springer Science + Business Media B.V, 2019) Oshiro, Ken; Gi, Keii; Fujimori, Shinichiro; van Soest, Heleen L.; Bertram, Christoph; Després, Jacques; Masui, Toshihiko; Rochedo, Pedro; Roelfsema, Mark; Vrontisi, ZoiThis study assesses Japan’s mid-century low-emission pathways using both national and global integrated assessment models in the common mitigation scenario framework, based on the carbon budgets corresponding to the global 2 °C goal. We examine high and low budgets, equal to global cumulative 1600 and 1000 Gt-CO2 (2011–2100) for global models, and 36 and 31 Gt-CO2 (2011–2050) in Japan for national models, based on the cost-effectiveness allocation performed by the global models. The impacts of near-term policy assumption, including the implementation and enhancement of the 2030 target of the nationally determined contribution (NDC), are also considered. Our estimates show that the low budget scenarios require a 75% reduction of CO2 emissions by 2050 below the 2010 level, which is nearly the same as Japan’s governmental 2050 goal of reducing greenhouse gas emissions by 80%. With regard to near-term actions, Japan’s 2030 target included in the NDC is on track to meet the high budget scenario, whereas it is falling short for the low budget scenario, which would require emission reductions immediately after 2020. Whereas models differ in the type of energy source on which they foresee Japan basing its decarbonization process (e.g., nuclear- or variable renewable energy-dependent), the large-scale deployment of low-carbon energy (nuclear, renewable, and carbon capture and storage) is shared across most models in both the high and low budget scenarios. By 2050, low-carbon energy represents 44–54% of primary energy and 86–97% of electricity supply in the high and low budget scenarios, respectively. © 2019, The Author(s).
- ItemA multi-model assessment of the co-benefits of climate mitigation for global air quality(Bristol : IOP Publishing, 2016) Rao, Shilpa; Klimont, Zbigniew; Leitao, Joana; Riahi, Keywan; van Dingenen, Rita; Reis, Lara Aleluia; Calvin, Katherine; Dentener, Frank; Drouet, Laurent; Fujimori, Shinichiro; Harmsen, Mathijs; Luderer, Gunnar; Heyes, Chris; Strefler, Jessica; Tavoni, Massimo; van Vuuren, Detlef P.We present a model comparison study that combines multiple integrated assessment models with a reduced-form global air quality model to assess the potential co-benefits of global climate mitigation policies in relation to the World Health Organization (WHO) goals on air quality and health. We include in our assessment, a range of alternative assumptions on the implementation of current and planned pollution control policies. The resulting air pollution emission ranges significantly extend those in the Representative Concentration Pathways. Climate mitigation policies complement current efforts on air pollution control through technology and fuel transformations in the energy system. A combination of stringent policies on air pollution control and climate change mitigation results in 40% of the global population exposed to PM levels below the WHO air quality guideline; with the largest improvements estimated for India, China, and Middle East. Our results stress the importance of integrated multisector policy approaches to achieve the Sustainable Development Goals.
- ItemA protocol for an intercomparison of biodiversity and ecosystem services models using harmonized land-use and climate scenarios(Katlenburg-Lindau : Copernicus, 2018) Kim, HyeJin; Rosa, Isabel M. D.; Alkemade, Rob; Leadley, Paul; Hurtt, George; Popp, Alexander; van Vuuren, Detlef P.; Anthoni, Peter; Arneth, Almut; Baisero, Daniele; Caton, Emma; Chaplin-Kramer, Rebecca; Chini, Louise; De Palma, Adriana; Di Fulvio, Fulvio; Di Marco, Moreno; Espinoza, Felipe; Ferrier, Simon; Fujimori, Shinichiro; Gonzalez, Ricardo E.; Gueguen, Maya; Guerra, Carlos; Harfoot, Mike; Harwood, Thomas D.; Hasegawa, Tomoko; Haverd, Vanessa; Havlík, Petr; Hellweg, Stefanie; Hill, Samantha L. L.; Hirata, Akiko; Hoskins, Andrew J.; Janse, Jan H.; Jetz, Walter; Johnson, Justin A.; Krause, Andreas; Leclère, David; Martins, Ines S.; Matsui, Tetsuya; Merow, Cory; Obersteiner, Michael; Ohashi, Haruka; Poulter, Benjamin; Purvis, Andy; Quesada, Benjamin; Rondinini, Carlo; Schipper, Aafke M.; Sharp, Richard; Takahashi, Kiyoshi; Thuiller, Wilfried; Titeux, Nicolas; Visconti, Piero; Ware, Christopher; Wolf, Florian; Pereira, Henrique M.To support the assessments of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), the IPBES Expert Group on Scenarios and Models is carrying out an intercomparison of biodiversity and ecosystem services models using harmonized scenarios (BES-SIM). The goals of BES-SIM are (1) to project the global impacts of land-use and climate change on biodiversity and ecosystem services (i.e., nature's contributions to people) over the coming decades, compared to the 20th century, using a set of common metrics at multiple scales, and (2) to identify model uncertainties and research gaps through the comparisons of projected biodiversity and ecosystem services across models. BES-SIM uses three scenarios combining specific Shared Socio-economic Pathways (SSPs) and Representative Concentration Pathways (RCPs)-SSP1xRCP2.6, SSP3xRCP6.0, SSP5xRCP8.6-to explore a wide range of land-use change and climate change futures. This paper describes the rationale for scenario selection, the process of harmonizing input data for land use, based on the second phase of the Land Use Harmonization Project (LUH2), and climate, the biodiversity and ecosystem services models used, the core simulations carried out, the harmonization of the model output metrics, and the treatment of uncertainty. The results of this collaborative modeling project will support the ongoing global assessment of IPBES, strengthen ties between IPBES and the Intergovernmental Panel on Climate Change (IPCC) scenarios and modeling processes, advise the Convention on Biological Diversity (CBD) on its development of a post-2020 strategic plans and conservation goals, and inform the development of a new generation of nature-centred scenarios.