Repository logo
  • English
  • Deutsch
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • Home
  • Browse
    About
  1. Home
  2. Browse by Author

Browsing by Author "Hentschel, M."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Impacts of global change on water-related sectors and society in a trans-boundary central European river basin – Part 2: From eco-hydrology to water demand management
    (München : European Geopyhsical Union, 2007) Conradt, T.; Kaltofen, M.; Hentschel, M.; Hattermann, F.F.; Wechsung, F.
    This second part of the paper presents the details of the eco-hydrological model SWIM simulating the natural water supply and its coupling to WBalMo, a water management model. Based on the climate scenarios of the STAR model, SWIM simulates the natural water and matter fluxes for the entire Elbe River area. All relevant processes are modelled for hydrotopes and the resulting discharges are accumulated in subbasins. The output data are input for the water management model WBalMo and the quality models Moneris and QSim. WBalMo takes storage management, inputs and withdrawals into account and analyses how demands by industry, power plants and households will be met at changing natural supply conditions. Some of the first results shall be presented here.
  • Loading...
    Thumbnail Image
    Item
    Spin-orbit coupling of light in asymmetric microcavities
    (London : Nature Publishing Group, 2016) Ma, L.B.; Li, S.L.; Fomin, V.M.; Hentschel, M.; Götte, J.B.; Yin, Y.; Jorgensen, M.R.; Schmidt, O.G.
    When spinning particles, such as electrons and photons, undergo spin–orbit coupling, they can acquire an extra phase in addition to the well-known dynamical phase. This extra phase is called the geometric phase (also known as the Berry phase), which plays an important role in a startling variety of physical contexts such as in photonics, condensed matter, high-energy and space physics. The geometric phase was originally discussed for a cyclically evolving physical system with an Abelian evolution, and was later generalized to non-cyclic and non-Abelian cases, which are the most interesting fundamental subjects in this area and indicate promising applications in various fields. Here, we enable optical spin–orbit coupling in asymmetric microcavities and experimentally observe a non-cyclic optical geometric phase acquired in a non-Abelian evolution. Our work is relevant to fundamental studies and implies promising applications by manipulating photons in on-chip quantum devices.
unread
  • Imprint
  • Privacy policy
  • Accessibility
unread