Browsing by Author "Hippler, R."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemAnalysis of the release characteristics of Cu-treated antimicrobial implant surfaces using atomic absorption spectrometry(New York, NY : Hindawi, 2012) Zietz, C.; Fritsche, A.; Finke, B.; Stranak, V.; Haenle, M.; Hippler, R.; Mittelmeier, W.; Bader, R.New developments of antimicrobial implant surfaces doped with copper (Cu) ions may minimize the risk of implant-associated infections. However, experimental evaluation of the Cu release is influenced by various test parameters. The aim of our study was to evaluate the Cu release characteristics in vitro according to the storage fluid and surface roughness. Plasma immersion ion implantation of Cu (Cu-PIII) and pulsed magnetron sputtering process of a titanium copper film (Ti-Cu) were applied to titanium alloy (Ti6Al4V) samples with different surface finishing of the implant material (polished, hydroxyapatite and corundum blasted). The samples were submersed into either double-distilled water, human serum, or cell culture medium. Subsequently, the Cu concentration in the supernatant was measured using atomic absorption spectrometry. The test fluid as well as the surface roughness can alter the Cu release significantly, whereby the highest Cu release was determined for samples with corundum-blasted surfaces stored in cell medium.
- ItemBehavior of a porous particle in a radiofrequency plasma under pulsed argon ion beam bombardment(College Park, MD : Institute of Physics Publishing, 2010) Wiese, R.; Sushkov, V.; Kersten, H.; Ikkurthi, V.R.; Schneider, R.; Hippler, R.The behavior of a single porous particle with a diameter of 250 μm levitating in a radiofrequency (RF) plasma under pulsed argon ion beam bombardment was investigated. The motion of the particle under the action of the ion beam was observed to be an oscillatory motion. The Fourier-analyzed motion is dominated by the excitation frequency of the pulsed ion beam and odd higher harmonics, which peak near the resonance frequency. The appearance of even harmonics is explained by a variation of the particles's charge depending on its position in the plasma sheath. The Fourier analysis also allows a discussion of neutral and ion forces. The particle's charge was derived and compared with theoretical estimates based on the orbital motion-limited (OML) model using also a numerical simulation of the RF discharge. The derived particle's charge is about 7-15 times larger than predicted by the theoretical models. This difference is attributed to the porous structure of the particle. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
- ItemExamples for application and diagnostics in plasma-powder interaction([London] : IOP, 2003) Kersten, H.; Wiese, R.; Thieme, G.; Fröhlich, M.; Kopitov, A.; Bojic, D.; Scholze, F.; Neumann, H.; Quaas, M.; Wulff, H.; Hippler, R.Low-pressure plasmas offer a unique possibility of confinement, control and fine tailoring of particle properties. Hence, dusty plasmas have grown into a vast field and new applications of plasma-processed dust particles are emerging. There is demand for particles with special properties and for particle-seeded composite materials. For example, the stability of luminophore particles could be improved by coating with protective Al2O3 films which are deposited by a PECVD process using a metal-organic precursor gas. Alternatively, the interaction between plasma and injected micro-disperse powder particles can also be used as a diagnostic tool for the study of plasma surface processes. Two examples will be provided: the interaction of micro-sized (SiO2) grains confined in a radiofrequency plasma with an external ion beam as well as the effect of a dc-magnetron discharge on confined particles during deposition have been investigated.
- ItemInteraction of injected dust particles with metastable neon atoms in a radio frequency plasma([London] : IOP, 2008) Do, H. T.; Kersten, H.; Hippler, R.Spatial density and temperature profiles of neon metastables produced in a radio frequency (rf) discharge were investigated by means of tunable diode laser absorption spectroscopy. The experiments were performed in the PULVA1 reactor, which is designed for the study of complex (dusty) plasmas. The line averaged measured density is about 1.5 × 1015 m-3 in the bulk and drops almost linearly in the plasma sheath. The gas temperature is in the range of 370390 K. The flow of metastable atoms in the plasma sheath deduced from the spatial density distribution is dominated by the flow towards the rf electrode. The sheath length is supposed as the effective diffusion length in the plasma sheath region. This approximation was used to investigate the interaction of injected particles with the plasma. The observations and estimation provide evidence for a significant interaction between metastable atoms and powder particles which is important for energy transfer from the plasma to the particles. The power per unit area absorbed by dust particles due to the collision of metastable atoms with the dust particle surface is in the range of a few tens of mW m-2.