Browsing by Author "Holden, P.B."
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- ItemCarbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: A multi-model analysis(München : European Geopyhsical Union, 2013) Joos, F.; Roth, R.; Fuglestvedt, J.S.; Peters, G.P.; Enting, I.G.; von Bloh, W.; Brovkin, V.; Burke, E.J.; Eby, M.; Edwards, N.R.; Friedrich, T.; Frölicher, T.L.; Halloran, P.R.; Holden, P.B.; Jones, C.; Kleinen, T.; Mackenzie, F.T.; Matsumoto, K.; Meinshausen, M.; Plattner, G.-K.; Reisinger, A.; Segschneider, J.; Shaffer, G.; Steinacher, M.; Strassmann, K.; Tanaka, K.; Timmermann, A.; Weaver, A.J.The responses of carbon dioxide (CO2) and other climate variables to an emission pulse of CO2 into the atmosphere are often used to compute the Global Warming Potential (GWP) and Global Temperature change Potential (GTP), to characterize the response timescales of Earth System models, and to build reduced-form models. In this carbon cycle-climate model intercomparison project, which spans the full model hierarchy, we quantify responses to emission pulses of different magnitudes injected under different conditions. The CO2 response shows the known rapid decline in the first few decades followed by a millennium-scale tail. For a 100 Gt-C emission pulse added to a constant CO2 concentration of 389 ppm, 25 ± 9% is still found in the atmosphere after 1000 yr; the ocean has absorbed 59 ± 12% and the land the remainder (16 ± 14%). The response in global mean surface air temperature is an increase by 0.20 ± 0.12 °C within the first twenty years; thereafter and until year 1000, temperature decreases only slightly, whereas ocean heat content and sea level continue to rise. Our best estimate for the Absolute Global Warming Potential, given by the time-integrated response in CO2 at year 100 multiplied by its radiative efficiency, is 92.5 × 10−15 yr W m−2 per kg-CO2. This value very likely (5 to 95% confidence) lies within the range of (68 to 117) × 10−15 yr W m−2 per kg-CO2. Estimates for time-integrated response in CO2 published in the IPCC First, Second, and Fourth Assessment and our multi-model best estimate all agree within 15% during the first 100 yr. The integrated CO2 response, normalized by the pulse size, is lower for pre-industrial conditions, compared to present day, and lower for smaller pulses than larger pulses. In contrast, the response in temperature, sea level and ocean heat content is less sensitive to these choices. Although, choices in pulse size, background concentration, and model lead to uncertainties, the most important and subjective choice to determine AGWP of CO2 and GWP is the time horizon.
- ItemHistorical and idealized climate model experiments: An intercomparison of Earth system models of intermediate complexity(München : European Geopyhsical Union, 2013) Eby, M.; Weaver, A.J.; Alexander, K.; Zickfeld, K.; Abe-Ouchi, A.; Cimatoribus, A.A.; Crespin, E.; Drijfhout, S.S.; Edwards, N.R.; Eliseev, A.V.; Feulner, G.; Fichefet, T.; Forest, C.E.; Goosse, H.; Holden, P.B.; Joos, F.; Kawamiya, M.; Kicklighter, D.; Kienert, H.; Matsumoto, K.; Mokhov, I.I.; Monier, E.; Olsen, S.M.; Pedersen, J.O.P.; Perrette, M.; Philippon-Berthier, G.; Ridgwell, A.; Schlosser, A.; Schneider von Deimling, T.; Shaffer, G.; Smith, R.S.; Spahni, R.; Sokolov, A.P.; Steinacher, M.; Tachiiri, K.; Tokos, K.; Yoshimori, M.; Zeng, N.; Zhao, F.Both historical and idealized climate model experiments are performed with a variety of Earth system models of intermediate complexity (EMICs) as part of a community contribution to the Intergovernmental Panel on Climate Change Fifth Assessment Report. Historical simulations start at 850 CE and continue through to 2005. The standard simulations include changes in forcing from solar luminosity, Earth's orbital configuration, CO2, additional greenhouse gases, land use, and sulphate and volcanic aerosols. In spite of very different modelled pre-industrial global surface air temperatures, overall 20th century trends in surface air temperature and carbon uptake are reasonably well simulated when compared to observed trends. Land carbon fluxes show much more variation between models than ocean carbon fluxes, and recent land fluxes appear to be slightly underestimated. It is possible that recent modelled climate trends or climate–carbon feedbacks are overestimated resulting in too much land carbon loss or that carbon uptake due to CO2 and/or nitrogen fertilization is underestimated. Several one thousand year long, idealized, 2 × and 4 × CO2 experiments are used to quantify standard model characteristics, including transient and equilibrium climate sensitivities, and climate–carbon feedbacks. The values from EMICs generally fall within the range given by general circulation models. Seven additional historical simulations, each including a single specified forcing, are used to assess the contributions of different climate forcings to the overall climate and carbon cycle response. The response of surface air temperature is the linear sum of the individual forcings, while the carbon cycle response shows a non-linear interaction between land-use change and CO2 forcings for some models. Finally, the preindustrial portions of the last millennium simulations are used to assess historical model carbon-climate feedbacks. Given the specified forcing, there is a tendency for the EMICs to underestimate the drop in surface air temperature and CO2 between the Medieval Climate Anomaly and the Little Ice Age estimated from palaeoclimate reconstructions. This in turn could be a result of unforced variability within the climate system, uncertainty in the reconstructions of temperature and CO2, errors in the reconstructions of forcing used to drive the models, or the incomplete representation of certain processes within the models. Given the forcing datasets used in this study, the models calculate significant land-use emissions over the pre-industrial period. This implies that land-use emissions might need to be taken into account, when making estimates of climate–carbon feedbacks from palaeoclimate reconstructions.
- ItemA model-based constraint on CO2 fertilisation(München : European Geopyhsical Union, 2013) Holden, P.B.; Edwards, N.R.; Gerten, D.; Schaphoff, S.We derive a constraint on the strength of CO2 fertilisation of the terrestrial biosphere through a "top-down" approach, calibrating Earth system model parameters constrained by the post-industrial increase of atmospheric CO2 concentration. We derive a probabilistic prediction for the globally averaged strength of CO2 fertilisation in nature, for the period 1850 to 2000 AD, implicitly net of other limiting factors such as nutrient availability. The approach yields an estimate that is independent of CO2 enrichment experiments. To achieve this, an essential requirement was the incorporation of a land use change (LUC) scheme into the GENIE Earth system model. Using output from a 671-member ensemble of transient GENIE simulations, we build an emulator of the change in atmospheric CO2 concentration change since the preindustrial period. We use this emulator to sample the 28-dimensional input parameter space. A Bayesian calibration of the emulator output suggests that the increase in gross primary productivity (GPP) in response to a doubling of CO2 from preindustrial values is very likely (90% confidence) to exceed 20%, with a most likely value of 40–60%. It is important to note that we do not represent all of the possible contributing mechanisms to the terrestrial sink. The missing processes are subsumed into our calibration of CO2 fertilisation, which therefore represents the combined effect of CO2 fertilisation and additional missing processes. If the missing processes are a net sink then our estimate represents an upper bound. We derive calibrated estimates of carbon fluxes that are consistent with existing estimates. The present-day land–atmosphere flux (1990–2000) is estimated at −0.7 GTC yr−1 (likely, 66% confidence, in the range 0.4 to −1.7 GTC yr−1). The present-day ocean–atmosphere flux (1990–2000) is estimated to be −2.3 GTC yr−1 (likely in the range −1.8 to −2.7 GTC yr−1). We estimate cumulative net land emissions over the post-industrial period (land use change emissions net of the CO2 fertilisation and climate sinks) to be 66 GTC, likely to lie in the range 0 to 128 GTC.
- ItemProducing Policy-relevant Science by Enhancing Robustness and Model Integration for the Assessment of Global Environmental Change(Amsterdam [u.a.] : Elsevier Science, 2019) Warren, R.F.; Edwards, N.R.; Babonneau, F.; Bacon, P.M.; Dietrich, J.P.; Ford, R.W.; Garthwaite, P.; Gerten, D.; Goswami, S.; Haurie, A.; Hiscock, K.; Holden, P.B.; Hyde, M.R.; Joshi, S.R.; Kanudia, A.; Labriet, M.; Leimbach, M.; Oyebamiji, O.K.; Osborn, T.; Pizzileo, B.; Popp, A.; Price, J.; Riley, G.D.; Schaphoff, S.; Slavin, P.; Vielle, M.; Wallace, C.We use the flexible model coupling technology known as the bespoke framework generator to link established existing modules representing dynamics in the global economy (GEMINI_E3), the energy system (TIAM-WORLD), the global and regional climate system (MAGICC6, PLASIM-ENTS and ClimGEN), the agricultural system, the hydrological system and ecosystems (LPJmL), together in a single integrated assessment modelling (IAM) framework, building on the pre-existing framework of the Community Integrated Assessment System. Next, we demonstrate the application of the framework to produce policy-relevant scientific information. We use it to show that when using carbon price mechanisms to induce a transition from a high-carbon to a low-carbon economy, prices can be minimised if policy action is taken early, if burden sharing regimes are used, and if agriculture is intensified. Some of the coupled models have been made available for use at a secure and user-friendly web portal. © 2018 The Authors
- ItemSystem complexity and policy integration challenges: The Brazilian Energy- Water-Food Nexus(Amsterdam [u.a.] : Elsevier Science, 2019) Mercure, J.-F.; Paim, M.A.; Bocquillon, P.; Lindner, S.; Salas, P.; Martinelli, P.; Berchin, I.I.; de Andrade Guerra, J.B.S.O; Derani, C.; de Albuquerque Junior, C.L.; Ribeiro, J.M.P.; Knobloch, F.; Pollitt, H.; Edwards, N.R.; Holden, P.B.; Foley, A.; Schaphoff, S.; Faraco, R.A.; Vinuales, J.E.The Energy-Water-Food Nexus is one of the most complex sustainability challenges faced by the world. This is particularly true in Brazil, where insufficiently understood interactions within the Nexus are contributing to large-scale deforestation and land-use change, water and energy scarcity, and increased vulnerability to climate change. The reason is a combination of global environmental change and global economic change, putting unprecedented pressures on the Brazilian environment and ecosystems. In this paper, we identify and discuss the main Nexus challenges faced by Brazil across sectors (e.g. energy, agriculture, water) and scales (e.g. federal, state, municipal). We use four case studies to explore all nodes of the Nexus. For each, we analyse data from economic and biophysical modelling sources in combination with an overview of the legislative and policy landscape, in order to identify governance shortcomings in the context of growing challenges. We analyse the complex interdependence of developments at the global and local (Brazilian) levels, highlighting the impact of global environmental and economic change on Brazil and, conversely, that of developments in Brazil for other countries and the world. We conclude that there is a need to adjust the scientific approach to these challenges as an enabling condition for stronger science-policy bridges for sustainability policy-making. © 2019 The Author(s)