Browsing by Author "Hoppe, Ulf-Peter"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemImpacts of a sudden stratospheric warming on the mesospheric metal layers(Amsterdam [u.a.] : Elsevier Science, 2017) Feng, Wuhu; Kaifler, Bernd; Marsh, Daniel R.; Höffner, Josef; Hoppe, Ulf-Peter; Williams, Bifford P.; Plane, John M.C.We report measurements of atomic sodium, iron and temperature in the mesosphere and lower thermosphere (MLT) made by ground-based lidars at the ALOMAR observatory (69°N, 16°E) during a major sudden stratospheric warming (SSW) event that occurred in January 2009. The high resolution temporal observations allow the responses of the Na and Fe layers to the SSW at high northern latitudes to be investigated. A significant cooling with temperatures as low as 136 K around 90 km was observed on 22–23 January 2009, along with substantial depletions of the Na and Fe layers (an ~80% decrease in the column abundance with respect to the mean over the observation period). The Whole Atmosphere Community Climate Model (WACCM) incorporating the chemistry of Na, Fe, Mg and K, and nudged with reanalysis data below 60 km, captures well the timing of the SSW, although the extent of the cooling and consequently the depletion in the Na and Fe layers is slightly underestimated. The model also predicts that the perturbations to the metal layers would have been observable even at equatorial latitudes. The modelled Mg layer responds in a very similar way to Na and Fe, whereas the K layer is barely affected by the SSW because of the enhanced conversion of K+ ions to K atoms at the very low temperatures.
- ItemSpatial and temporal variability in MLT turbulence inferred from in situ and ground-based observations during the WADIS-1 sounding rocket campaign(München : European Geopyhsical Union, 2017) Strelnikov, Boris; Szewczyk, Artur; Strelnikova, Irina; Latteck, Ralph; Baumgarten, Gerd; Lübken, Franz-Josef; Rapp, Markus; Löhle, Stefan; Eberhart, Martin; Hoppe, Ulf-Peter; Dunker, Tim; Friedrich, Martin; Hedin, Jonas; Khaplanov, Mikhail; Gumbel, Jörg; Barjatya, ArohIn summer 2013 the WADIS-1 sounding rocket campaign was conducted at the Andøya Space Center (ACS) in northern Norway (69° N, 16° E). Among other things, it addressed the question of the variability in mesosphere/lower thermosphere (MLT) turbulence, both in time and space. A unique feature of the WADIS project was multi-point turbulence sounding applying different measurement techniques including rocket-borne ionization gauges, VHF MAARSY radar, and VHF EISCAT radar near Tromsø. This allowed for horizontal variability to be observed in the turbulence field in the MLT at scales from a few to 100 km. We found that the turbulence dissipation rate, ε varied in space in a wavelike manner both horizontally and in the vertical direction. This wavelike modulation reveals the same vertical wavelengths as those seen in gravity waves. We also found that the vertical mean value of radar observations of ε agrees reasonably with rocket-borne measurements. In this way defined 〈εradar〉 value reveals clear tidal modulation and results in variation by up to 2 orders of magnitude with periods of 24 h. The 〈εradar〉 value also shows 12 h and shorter (1 to a few hours) modulations resulting in one decade of variation in 〈εradar〉 magnitude. The 24 h modulation appeared to be in phase with tidal change of horizontal wind observed by SAURA-MF radar. Such wavelike and, in particular, tidal modulation of the turbulence dissipation field in the MLT region inferred from our analysis is a new finding of this work.