Browsing by Author "Huang, Hao"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemCausal Relationship over Knowledge Graphs(2022) Huang, Hao; Al Hasan, Mohammad; Xiong, LiCausality has been discussed for centuries, and the theory of causal inference over tabular data has been broadly studied and utilized in multiple disciplines. However, only a few works attempt to infer the causality while exploiting the meaning of the data represented in a data structure like knowledge graph. These works offer a glance at the possibilities of causal inference over knowledge graphs, but do not yet consider the metadata, e.g., cardinalities, class subsumption and overlap, and integrity constraints. We propose CareKG, a new formalism to express causal relationships among concepts, i.e., classes and relations, and enable causal queries over knowledge graphs using semantics of metadata. We empirically evaluate the expressiveness of CareKG in a synthetic knowledge graph concerning cardinalities, class subsumption and overlap, integrity constraints. Our initial results indicate that CareKG can represent and measure causal relations with some semantics which are uncovered by state-of-the-art approaches.
- ItemCauseKG: A Framework Enhancing Causal Inference With Implicit Knowledge Deduced From Knowledge Graphs(New York, NY : IEEE, 2024) Huang, Hao; Vidal, Maria-EstherCausal inference is a critical technique for inferring causal relationships from data and distinguishing causation from correlation. Causal inference frameworks rely on structured data, typically represented in flat tables or relational models. These frameworks estimate causal effects based only on explicit facts, overlooking implicit information in the data, which can lead to inaccurate causal estimates. Knowledge graphs (KGs) inherently capture implicit information through logical rules applied to explicit facts, providing a unique opportunity to leverage implicit knowledge. However, existing frameworks are not applicable to KGs due to their semi-structured nature. CauseKG is a causal inference framework designed to address the intricacies of KGs and seamlessly integrate implicit information using KG-specific entailment techniques, providing a more accurate causal inference process. We empirically evaluate the effectiveness of CauseKG against benchmarks constructed from synthetic and real-world datasets. The results suggest that CauseKG can produce a lower mean absolute error in causal inference compared to state-of-the-art methods. The empirical results demonstrate CauseKG's ability to address causal questions in a variety of domains. This research highlights the importance of extending causal inference techniques to KGs, emphasising the improved accuracy that can be achieved by integrating implicit and explicit information.