Browsing by Author "Karras, Oliver"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- ItemMeetings and Mood-Related or Not? Insights from Student Software Projects(New York : Association for Computing Machinery, 2022) Klünder, Jil; Karras, Oliver; Madeiral, Fernanda; Lassenius, Casper[Background:] Teamwork, coordination, and communication are a prerequisite for the timely completion of a software project. Meetings as a facilitator for coordination and communication are an established medium for information exchange. Analyses of meetings in software projects have shown that certain interactions in these meetings, such as proactive statements followed by supportive ones, influence the mood and motivation of a team, which in turn affects its productivity. So far, however, research has focused only on certain interactions at a detailed level, requiring a complex and fine-grained analysis of a meeting itself. [Aim:] In this paper, we investigate meetings from a more abstract perspective, focusing on the polarity of the statements, i.e., whether they appear to be positive, negative, or neutral. [Method:] We analyze the relationship between the polarity of statements in meetings and different social aspects, including conflicts as well as the mood before and after a meeting. [Results:] Our results emerge from 21 student software project meetings and show some interesting insights: (1) Positive mood before a meeting is both related to the amount of positive statements in the beginning, as well as throughout the whole meeting, (2) negative mood before the meeting only influences the amount of negative statements in the first quarter of the meeting, but not the whole meeting, and (3) the amount of positive and negative statements during the meeting has no influence on the mood afterwards. [Conclusions:] We conclude that the behaviour in meetings might rather influence short-term emotional states (feelings) than long-term emotional states (mood), which are more important for the project.
- ItemOpen Research Knowledge Graph(Goettingen: Cuvillier Verlag, 2024-05-07) Auer, Sören; Ilangovan, Vinodh; Stocker, Markus; Tiwari, Sanju; Vogt, Lars; Bernard-Verdier, Maud; D'Souza, Jennifer; Fadel , Kamel; Farfar, Kheir Eddine; Göpfert , Jan; Haris , Muhammad; Heger, Tina; Hussein, Hassan; Jaradeh, Yaser; Jeschke, Jonathan M.; Jiomekong , Azanzi; Kabongo, Salomon; Karras, Oliver; Kuckertz, Patrick; Kullamann, Felix; Martin, Emily A.; Oelen, Allard; Perez-Alvarez, Ricardo; Prinz, Manuel; Snyder, Lauren D.; Stolten, Detlef; Weinand, Jann M.As we mark the fifth anniversary of the alpha release of the Open Research Knowledge Graph (ORKG), it is both timely and exhilarating to celebrate the significant strides made in this pioneering project. We designed this book as a tribute to the evolution and achievements of the ORKG and as a practical guide encapsulating its essence in a form that resonates with both the general reader and the specialist. The ORKG has opened a new era in the way scholarly knowledge is curated, managed, and disseminated. By transforming vast arrays of unstructured narrative text into structured, machine-processable knowledge, the ORKG has emerged as an essential service with sophisticated functionalities. Over the past five years, our team has developed the ORKG into a vibrant platform that enhances the accessibility and visibility of scientific research. This book serves as a non-technical guide and a comprehensive reference for new and existing users that outlines the ORKG’s approach, technologies, and its role in revolutionizing scholarly communication. By elucidating how the ORKG facilitates the collection, enhancement, and sharing of knowledge, we invite readers to appreciate the value and potential of this groundbreaking digital tool presented in a tangible form. Looking ahead, we are thrilled to announce the upcoming unveiling of promising new features and tools at the fifth-year celebration of the ORKG’s alpha release. These innovations are set to redefine the boundaries of machine assistance enabled by research knowledge graphs. Among these enhancements, you can expect more intuitive interfaces that simplify the user experience, and enhanced machine learning models that improve the automation and accuracy of data curation. We also included a glossary tailored to clarifying key terms and concepts associated with the ORKG to ensure that all readers, regardless of their technical background, can fully engage with and understand the content presented. This book transcends the boundaries of a typical technical report. We crafted this as an inspiration for future applications, a testament to the ongoing evolution in scholarly communication that invites further collaboration and innovation. Let this book serve as both your guide and invitation to explore the ORKG as it continues to grow and shape the landscape of scientific inquiry and communication.
- ItemOrganizing Scientific Knowledge From Energy System Research Using the Open Research Knowledge Graph(Genève : CERN, 2024) Karras, Oliver; Göpfert, Jan; Kuckertz, Patrick; Pelser, Tristan; Auer, SörenExtended abstract and presentation slides of our contribution to the first NFDI4Energy conference.
- ItemOrganizing Scientific Knowledge from Engineering Sciences Using the Open Research Knowledge Graph: The Tailored Forming Process Chain Use Case(Paris : CODATA, 2024) Karras, Oliver; Budde, Laura; Merkel, Paulina; Hermsdorf, Jörg; Stonis, Malte; Overmeyer, Ludger; Behrens, Bernd-Arno; Auer, SörenBackground: Engineering sciences are essential for addressing contemporary technical, environmental, and economic challenges. Despite its data-intensive and interdisciplinary nature, the organization of Findable, Accessible, Interoperable, and Reusable (FAIR) scientific knowledge and data in this research field remains understudied. Engineers need infrastructures with services that support them in organizing FAIR scientific knowledge and data for communication and (re-)use. Aim: We explore the use of the Open Research Knowledge Graph (ORKG) as such an infrastructure by demonstrating how engineers can utilize the ORKG in innovative ways for communication and (re-)use. Method: For a use case from the Collaborative Research Center 1153 “Tailored Forming”, we collect, extract, and analyze scientific knowledge on 10 Tailored Forming Process Chains (TFPCs) from five publications in the ORKG. In particular, we semantically describe the TFPCs, i.a., regarding their steps, manufacturing methods, measurements, and results. The usefulness of the data extraction topics, their organization, and the relevance of the knowledge described is examined by an expert consultation with 21 experts. Results: Based on the described knowledge, we build and publish an ORKG comparison as a detailed overview for communication. Furthermore, we (re-)use the knowledge and answer eight competency questions asked by two domain experts. The validation shows a clear agreement of the 21 experts regarding the examined usefulness and relevance. Conclusions: Our use case shows that the ORKG as a ready-to-use infrastructure with services supports researchers, including engineers, in sustainably organizing FAIR scientific knowledge. The direct use of the ORKG by engineers is feasible, so the ORKG is a promising infrastructure for innovative ways of communicating and (re-)using FAIR scientific knowledge in engineering sciences, thus advancing this research field.
- ItemThe SciQA Scientific Question Answering Benchmark for Scholarly Knowledge(London : Nature Publishing Group, 2023) Auer, Sören; Barone, Dante A.C.; Bartz, Cassiano; Cortes, Eduardo G.; Jaradeh, Mohamad Yaser; Karras, Oliver; Koubarakis, Manolis; Mouromtsev, Dmitry; Pliukhin, Dmitrii; Radyush, Daniil; Shilin, Ivan; Stocker, Markus; Tsalapati, EleniKnowledge graphs have gained increasing popularity in the last decade in science and technology. However, knowledge graphs are currently relatively simple to moderate semantic structures that are mainly a collection of factual statements. Question answering (QA) benchmarks and systems were so far mainly geared towards encyclopedic knowledge graphs such as DBpedia and Wikidata. We present SciQA a scientific QA benchmark for scholarly knowledge. The benchmark leverages the Open Research Knowledge Graph (ORKG) which includes almost 170,000 resources describing research contributions of almost 15,000 scholarly articles from 709 research fields. Following a bottom-up methodology, we first manually developed a set of 100 complex questions that can be answered using this knowledge graph. Furthermore, we devised eight question templates with which we automatically generated further 2465 questions, that can also be answered with the ORKG. The questions cover a range of research fields and question types and are translated into corresponding SPARQL queries over the ORKG. Based on two preliminary evaluations, we show that the resulting SciQA benchmark represents a challenging task for next-generation QA systems. This task is part of the open competitions at the 22nd International Semantic Web Conference 2023 as the Scholarly Question Answering over Linked Data (QALD) Challenge.