Browsing by Author "Keidar, Michael"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- ItemCold atmospheric plasma, a novel promising anti-cancer treatment modality([Erscheinungsort nicht ermittelbar] : Impact Journals LLC, 2017) Yan, Dayun; Sherman, Jonathan H.; Keidar, MichaelOver the past decade, cold atmospheric plasma (CAP), a near room temperature ionized gas has shown its promising application in cancer therapy. Two CAP devices, namely dielectric barrier discharge and plasma jet, show significantly anti-cancer capacity over dozens of cancer cell lines in vitro and several subcutaneous xenograft tumors in vivo. In contrast to conventional anti-cancer approaches and drugs, CAP is a selective anti-cancer treatment modality. Thus far establishing the chemical and molecular mechanism of the anti-cancer capacity of CAP is far from complete. In this review, we provide a comprehensive introduction of the basics of CAP, state of the art research in this field, the primary challenges, and future directions to cancer biologists.
- ItemPhysics of e × B discharges relevant to plasma propulsion and similar technologies(Melville, NY : AIP, 2020) Kaganovich, Igor D.; Smolyakov, Andrei; Raitses, Yevgeny; Ahedo, Eduardo; Mikellides, Ioannis G.; Jorns, Benjamin; Taccogna, Francesco; Gueroult, Renaud; Tsikata, Sedina; Bourdon, Anne; Boeuf, Jean-Pierre; Keidar, Michael; Powis, Andrew Tasman; Merino, Mario; Cappelli, Mark; Hara, Kentaro; Carlsson, Johan A.; Fisch, Nathaniel J.; Chabert, Pascal; Schweigert, Irina; Lafleur, Trevor; Matyash, Konstantin; Khrabrov, Alexander V.; Boswell, Rod W.; Fruchtman, AmnonThis paper provides perspectives on recent progress in understanding the physics of devices in which the external magnetic field is applied perpendicular to the discharge current. This configuration generates a strong electric field that acts to accelerate ions. The many applications of this set up include generation of thrust for spacecraft propulsion and separation of species in plasma mass separation devices. These "E × B"plasmas are subject to plasma-wall interaction effects and to various micro- and macroinstabilities. In many devices we also observe the emergence of anomalous transport. This perspective presents the current understanding of the physics of these phenomena and state-of-the-art computational results, identifies critical questions, and suggests directions for future research.
- ItemPlasma-Treated Solutions (PTS) in Cancer Therapy(Basel : MDPI, 2021) Tanaka, Hiromasa; Bekeschus, Sander; Yan, Dayun; Hori, Masaru; Keidar, Michael; Laroussi, MounirCold physical plasma is a partially ionized gas generating various reactive oxygen and nitrogen species (ROS/RNS) simultaneously. ROS/RNS have therapeutic effects when applied to cells and tissues either directly from the plasma or via exposure to solutions that have been treated beforehand using plasma processes. This review addresses the challenges and opportunities of plasma-treated solutions (PTSs) for cancer treatment. These PTSs include plasma-treated cell culture media in experimental research as well as clinically approved solutions such as saline and Ringer’s lactate, which, in principle, already qualify for testing in therapeutic settings. Several types of cancers were found to succumb to the toxic action of PTSs, suggesting a broad mechanism of action based on the tumor-toxic activity of ROS/RNS stored in these solutions. Moreover, it is indi-cated that the PTS has immuno-stimulatory properties. Two different routes of application are cur-rently envisaged in the clinical setting. One is direct injection into the bulk tumor, and the other is lavage in patients suffering from peritoneal carcinomatosis adjuvant to standard chemotherapy. While many promising results have been achieved so far, several obstacles, such as the standardized generation of large volumes of sterile PTS, remain to be addressed. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
- ItemRecognizing Cold Atmospheric Plasma Plume Using Computer Vision(Basel : MDPI, 2022) Lazarus, Marisa; Yan, Dayun; Limanowski, Ruby; Lin, Li; Keidar, MichaelOver the last three decades, cold atmospheric plasma (CAP) has been heavily investigated in a wide range of biological applications, including wound healing, microorganism sterilization, and cancer treatment. Atmospheric pressure plasma jets (APPJs) are the most common plasma sources in plasma medicine. An APPJ’s size determines its application range and approach in treatment. In this study, we demonstrated the real-time recognition of an APPJ’s plasma plume output using computer vision (CV), dramatically improving the measurement speed compared to the traditional method of using the naked eye. Our work provides a framework to monitor an aspect of an APPJ’s performance in real time, which is a necessary step to achieving an intelligent CAP source.