Browsing by Author "Kushner, Mark J."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemFoundations of plasma standards(Bristol : IOP Publ., 2023) Alves, Luís L.; Becker, Markus M.; van Dijk, Jan; Gans, Timo; Go, David B.; Stapelmann, Katharina; Tennyson, Jonathan; Turner, Miles M.; Kushner, Mark J.The field of low-temperature plasmas (LTPs) excels by virtue of its broad intellectual diversity, interdisciplinarity and range of applications. This great diversity also challenges researchers in communicating the outcomes of their investigations, as common practices and expectations for reporting vary widely in the many disciplines that either fall under the LTP umbrella or interact closely with LTP topics. These challenges encompass comparing measurements made in different laboratories, exchanging and sharing computer models, enabling reproducibility in experiments and computations using traceable and transparent methods and data, establishing metrics for reliability, and in translating fundamental findings to practice. In this paper, we address these challenges from the perspective of LTP standards for measurements, diagnostics, computations, reporting and plasma sources. This discussion on standards, or recommended best practices, and in some cases suggestions for standards or best practices, has the goal of improving communication, reproducibility and transparency within the LTP field and fields allied with LTPs. This discussion also acknowledges that standards and best practices, either recommended or at some point enforced, are ultimately a matter of judgment. These standards and recommended practices should not limit innovation nor prevent research breakthroughs from having real-time impact. Ultimately, the goal of our research community is to advance the entire LTP field and the many applications it touches through a shared set of expectations.
- ItemNumerical study of the influence of surface reaction probabilities on reactive species in an rf atmospheric pressure plasma containing humidity(Bristol : IOP Publ., 2017) Schröter, Sandra; Gibson, Andrew R.; Kushner, Mark J.; Gans, Timo; O’Connell, DeborahThe quantification and control of reactive species (RS) in atmospheric pressure plasmas (APPs) is of great interest for their technological applications, in particular in biomedicine. Of key importance in simulating the densities of these species are fundamental data on their production and destruction. In particular, data concerning particle-surface reaction probabilities in APPs are scarce, with most of these probabilities measured in low-pressure systems. In this work, the role of surface reaction probabilities, γ, of reactive neutral species (H, O and OH) on neutral particle densities in a He-H2O radio-frequency micro APP jet (COST-APPJ) are investigated using a global model. It is found that the choice of γ, particularly for low-mass species having large diffusivities, such as H, can change computed species densities significantly. The importance of γ even at elevated pressures offers potential for tailoring the RS composition of atmospheric pressure microplasmas by choosing different wall materials or plasma geometries.
- ItemThe role of thermal energy accommodation and atomic recombination probabilities in low pressure oxygen plasmas(Bristol : IOP Publ., 2017) Gibson, Andrew Robert; Foucher, Mickaël; Marinov, Daniil; Chabert, Pascal; Gans, Timo; Kushner, Mark J.; Booth, Jean-PauSurface interaction probabilities are critical parameters that determine the behaviour of low pressure plasmas and so are crucial input parameters for plasma simulations that play a key role in determining their accuracy. However, these parameters are difficult to estimate without in situ measurements. In this work, the role of two prominent surface interaction probabilities, the atomic oxygen recombination coefficient γ O and the thermal energy accommodation coefficient α E in determining the plasma properties of low pressure inductively coupled oxygen plasmas are investigated using two-dimensional fluid-kinetic simulations. These plasmas are the type used for semiconductor processing. It was found that α E plays a crucial role in determining the neutral gas temperature and neutral gas density. Through this dependency, the value of α E also determines a range of other plasma properties such as the atomic oxygen density, the plasma potential, the electron temperature, and ion bombardment energy and neutral-to-ion flux ratio at the wafer holder. The main role of γ O is in determining the atomic oxygen density and flux to the wafer holder along with the neutral-to-ion flux ratio. It was found that the plasma properties are most sensitive to each coefficient when the value of the coefficient is small causing the losses of atomic oxygen and thermal energy to be surface interaction limited rather than transport limited.