Browsing by Author "Lübken, Franz-Josef"
Now showing 1 - 20 of 22
Results Per Page
Sort Options
- ItemAdvanced hodograph-based analysis technique to derive gravity-wave parameters from lidar observations(Katlenburg-Lindau : Copernicus, 2020) Strelnikova, Irina; Baumgarten, Gerd; Lübken, Franz-JosefAn advanced hodograph-based analysis technique to derive gravity-wave (GW) parameters from observations of temperature and winds is developed and presented as a step-by-step recipe with justification for every step in such an analysis. As the most adequate background removal technique the 2-D FFT is suggested. For an unbiased analysis of fluctuation whose amplitude grows with height exponentially, we propose applying a scaling function of the form exp (z∕(ςH)), where H is scale height, z is altitude, and the constant ς can be derived by a linear fit to the fluctuation profile and should be in the range 1–10. The most essential part of the proposed analysis technique consists of fitting cosine waves to simultaneously measured profiles of zonal and meridional winds and temperature and subsequent hodograph analysis of these fitted waves. The linear wave theory applied in this analysis is extended by introducing a wave packet envelope term exp(−(z−z0)2/2σ2) that accounts for limited extent of GWs in the observational data set. The novelty of our approach is that its robustness ultimately allows for automation of the hodograph analysis and resolves many more GWs than can be inferred by the manually applied hodograph technique. This technique allows us to unambiguously identify upward- and downward-propagating GWs and their parameters. This technique is applied to unique lidar measurements of temperature and horizontal winds measured in an altitude range of 30 to 70 km.
- ItemAtomic oxygen number densities in the mesosphere–lower thermosphere region measured by solid electrolyte sensors onWADIS-2(Katlenburg-Lindau : Copernicus, 2019) Eberhart, Martin; Löhle, Stefan; Strelnikov, Boris; Hedin, Jonas; Khaplanov, Mikhail; Fasoulas, Stefanos; Gumbel, Jörg; Lübken, Franz-Josef; Rapp, MarkusAbsolute profiles of atomic oxygen number densities with high vertical resolution have been determined in the mesosphere-lower thermosphere (MLT) region from in situ measurements by several rocket-borne solid electrolyte sensors. The amperometric sensors were operated in both controlled and uncontrolled modes and with various orientations on the foredeck and aft deck of the payload. Calibration was based on mass spectrometry in a molecular beam containing atomic oxygen produced in a microwave discharge. The sensor signal is proportional to the number flux onto the electrodes, and the mass flow rate in the molecular beam was additionally measured to derive this quantity from the spectrometer reading. Numerical simulations provided aerodynamic correction factors to derive the atmospheric number density of atomic oxygen from the sensor data. The flight results indicate a preferable orientation of the electrode surface perpendicular to the rocket axis. While unstable during the upleg, the density profiles measured by these sensors show an excellent agreement with the atmospheric models and photometer results during the downleg of the trajectory. The high spatial resolution of the measurements allows for the identification of small-scale variations in the atomic oxygen concentration. © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License.
- ItemCase study of wave breaking with high-resolution turbulence measurements with LITOS and WRF simulations(München : European Geopyhsical Union, 2017) Schneider, Andreas; Wagner, Johannes; Söder, Jens; Gerding, Michael; Lübken, Franz-JosefMeasurements of turbulent energy dissipation rates obtained from wind fluctuations observed with the balloon-borne instrument LITOS (Leibniz-Institute Turbulence Observations in the Stratosphere) are combined with simulations with the Weather Research and Forecasting (WRF) model to study the breakdown of waves into turbulence. One flight from Kiruna (68° N, 21° E) and two flights from Kühlungsborn (54° N, 12° E) are analysed. Dissipation rates are of the order of 0. 1 mW kg−1 (∼ 0.01 K d−1) in the troposphere and in the stratosphere below 15 km, increasing in distinct layers by about 2 orders of magnitude. For one flight covering the stratosphere up to ∼ 28 km, the measurement shows nearly no turbulence at all above 15 km. Another flight features a patch with highly increased dissipation directly below the tropopause, collocated with strong wind shear and wave filtering conditions. In general, small or even negative Richardson numbers are affirmed to be a sufficient condition for increased dissipation. Conversely, significant turbulence has also been observed in the lower stratosphere under stable conditions. Observed energy dissipation rates are related to wave patterns visible in the modelled vertical winds. In particular, the drop in turbulent fraction at 15 km mentioned above coincides with a drop in amplitude in the wave patterns visible in the WRF. This indicates wave saturation being visible in the LITOS turbulence data.
- ItemCLIME/RADIMP : Schlussbericht zum Forschungsvorhaben CLIME: Klimaänderungen in der Mesosphäre, climate changes in the mesosphere ; RADIMP: Non-LTE Studie des Strahlungseinflusses der unteren Atmosphäre auf die Mesosphäre/untere Thermosphäre, Non-LTE study of the radiative impact of the lower atmosphere on the mesosphere/lower thermosphere(Hannover : Technische Informationsbibliothek (TIB), 2005) Lübken, Franz-Josef[no abstract available]
- ItemEstimate of size distribution of charged MSPs measured in situ in winter during the WADIS-2 sounding rocket campaign(München : European Geopyhsical Union, 2017) Asmus, Heiner; Staszak, Tristan; Strelnikov, Boris; Lübken, Franz-Josef; Friedrich, Martin; Rapp, MarkusWe present results of in situ measurements of mesosphere–lower thermosphere dusty-plasma densities including electrons, positive ions and charged aerosols conducted during the WADIS-2 sounding rocket campaign. The neutral air density was also measured, allowing for robust derivation of turbulence energy dissipation rates. A unique feature of these measurements is that they were done in a true common volume and with high spatial resolution. This allows for a reliable derivation of mean sizes and a size distribution function for the charged meteor smoke particles (MSPs). The mean particle radius derived from Schmidt numbers obtained from electron density fluctuations was ∼ 0.56 nm. We assumed a lognormal size distribution of the charged meteor smoke particles and derived the distribution width of 1.66 based on in situ-measured densities of different plasma constituents. We found that layers of enhanced meteor smoke particles' density measured by the particle detector coincide with enhanced Schmidt numbers obtained from the electron and neutral density fluctuations. Thus, we found that large particles with sizes > 1 nm were stratified in layers of ∼ 1 km thickness and lying some kilometers apart from each other.
- ItemGreenhouse gas effects on the solar cycle response of water vapour and noctilucent clouds(Katlenburg, Lindau : Copernicus, 2023) Vellalassery, Ashique; Baumgarten, Gerd; Grygalashvyly, Mykhaylo; Lübken, Franz-JosefThe responses of water vapour (H2O) and noctilucent clouds (NLCs) to the solar cycle are studied using the Leibniz Institute for Middle Atmosphere (LIMA) model and the Mesospheric Ice Microphysics And tranSport (MIMAS) model. NLCs are sensitive to the solar cycle because their formation depends on background temperature and the H2O concentration. The solar cycle affects the H2O concentration in the upper mesosphere mainly in two ways: directly through the photolysis and, at the time and place of NLC formation, indirectly through temperature changes. We found that H2O concentration correlates positively with the temperature changes due to the solar cycle at altitudes above about 82 km, where NLCs form. The photolysis effect leads to an anti-correlation of H2O concentration and solar Lyman-α radiation, which gets even more pronounced at altitudes below ∼83 km when NLCs are present. We studied the H2O response to Lyman-α variability for the period 1992 to 2018, including the two most recent solar cycles. The amplitude of Lyman-α variation decreased by about 40 % in the period 2005 to 2018 compared to the preceding solar cycle, resulting in a lower H2O response in the late period. We investigated the effect of increasing greenhouse gases (GHGs) on the H2O response throughout the solar cycle by performing model runs with and without increases in carbon dioxide (CO2) and methane (CH4). The increase of methane and carbon dioxide amplifies the response of water vapour to the solar variability. Applying the geometry of satellite observations, we find a missing response when averaging over altitudes of 80 to 85 km, where H2O has a positive response and a negative response (depending on altitude), which largely cancel each other out. One main finding is that, during NLCs, the solar cycle response of H2O strongly depends on altitude.
- ItemIntercomparison of middle-atmospheric wind in observations and models(Katlenburg-Lindau : Copernicus, 2018-4-6) Rüfenacht, Rolf; Baumgarten, Gerd; Hildebrand, Jens; Schranz, Franziska; Matthias, Vivien; Stober, Gunter; Lübken, Franz-Josef; Kämpfer, NiklausWind profile information throughout the entire upper stratosphere and lower mesosphere (USLM) is important for the understanding of atmospheric dynamics but became available only recently, thanks to developments in remote sensing techniques and modelling approaches. However, as wind measurements from these altitudes are rare, such products have generally not yet been validated with (other) observations. This paper presents the first long-term intercomparison of wind observations in the USLM by co-located microwave radiometer and lidar instruments at Andenes, Norway (69.3∘ N, 16.0∘ E). Good correspondence has been found at all altitudes for both horizontal wind components for nighttime as well as daylight conditions. Biases are mostly within the random errors and do not exceed 5–10 m s−1, which is less than 10 % of the typically encountered wind speeds. Moreover, comparisons of the observations with the major reanalyses and models covering this altitude range are shown, in particular with the recently released ERA5, ECMWF's first reanalysis to cover the whole USLM region. The agreement between models and observations is very good in general, but temporally limited occurrences of pronounced discrepancies (up to 40 m s−1) exist. In the article's Appendix the possibility of obtaining nighttime wind information about the mesopause region by means of microwave radiometry is investigated.
- ItemLidar Soundings Between 30 and 100 km Altitude During Day and Night for Observation of Temperatures, Gravity Waves and Tides(Les Ulis : EDP Sciences, 2016) Gerding, Michael; Baumgarten, Kathrin; Höffner, Josef; Lübken, Franz-Josef; Gross, Barry; Moshary, F.; Arend, M.Ground-based temperature measurements by lidar are an important tool for the understanding of long-term temperature changes as well as the propagation of gravity waves and tides. Though, mesospheric soundings are often limited to nighttime conditions due to the low signal-tonoise ratio during the day. We developed a daylight-capable RMR lidar for temperature soundings in the middle atmosphere. The influences of the narrowband detector on the calculated hydrostatic temperatures as well as their correction are described. The RMR lidar is complemented by a co-located resonance lidar. We present an example for tidal analyses and short-term variability of tidal amplitudes
- ItemLocal time dependence of polar mesospheric clouds: A model study(München : European Geopyhsical Union, 2018) Schmidt, Francie; Baumgarten, Gerd; Berger, Uwe; Fiedler, Jens; Lübken, Franz-JosefThe Mesospheric Ice Microphysics And tranSport model (MIMAS) is used to study local time (LT) variations of polar mesospheric clouds (PMCs) in the Northern Hemisphere during the period from 1979 to 2013. We investigate the tidal behavior of brightness, altitude, and occurrence frequency and find a good agreement between model and lidar observations. At the peak of the PMC layer the mean ice radius varies from 35 to 45nm and the mean number density varies from 80 to 150cm−3 throughout the day. We also analyze PMCs in terms of ice water content (IWC) and show that only amplitudes of local time variations in IWC are sensitive to threshold conditions, whereas phases are conserved. In particular, relative local time variations decrease with larger thresholds. Local time variations also depend on latitude. In particular, absolute local time variations increase towards the pole. Furthermore, a phase shift exists towards the pole which is independent of the threshold value. In particular, the IWC maximum moves backward in time from 08:00LT at midlatitudes to 02:00LT at high latitudes. The persistent features of strong local time modulations in ice parameters are caused by local time structures in background temperature and water vapor. For a single year local time variations of temperature at 69°N are in a range of ±3K near 83km altitude. At sublimation altitudes the water vapor variation is about ±3.5ppmv, leading to a change in the saturation ratio by a factor of about 2 throughout the day.
- ItemLong term trends of mesopheric ice layers: A model study(Amsterdam [u.a.] : Elsevier Science, 2021) Lübken, Franz-Josef; Baumgarten, Gerd; Berger, UweTrends derived from the Leibniz-Institute Middle Atmosphere Model (LIMA) and the MIMAS ice particle model (Mesospheric Ice Microphysics And tranSport model) are presented for a period of 138 years (1871–2008) and for middle, high, and arctic latitudes, namely 58°N, 69°N, and 78°N, respectively. We focus on the analysis of mesospheric ice layers (NLC, noctilucent clouds) in the main summer season (July) and on yearly mean values. Model runs with and without an increase of carbon dioxide and water vapor (from methane oxidation) concentrations are performed. Trends are most prominent after ~1960 when the increase of both CO2 and H2O accelerates. It is important to distinguish between tendencies on geometric altitudes and on given pressure levels converted to altitudes (‘pressure altitudes’). Negative trends of (geometric) NLC altitudes are primarily due to cooling below NLC altitudes caused by CO2 increase. Increases of ice particle radii and NLC brightness with time are mainly caused by an enhancement of water vapor. Several ice layer and background parameter trends are similar at high and arctic latitudes but are substantially different at middle latitudes. This concerns, for example, occurrence rates, ice water content (IWC), and number of ice particles in a column. Considering the time period after 1960, geometric altitudes of NLC decrease by approximately 260 m per decade, and brightness increases by roughly 50% (1960–2008), independent of latitude. NLC altitudes decrease by approximately 15–20 m per increase of CO2 by 1 ppmv. The number of ice particles in a column and also at the altitude of maximum backscatter is nearly constant with time. At all latitudes, yearly mean NLC appear at altitudes where temperatures are close to 145±1 K. Ice particles are present nearly all the time at high and arctic latitudes, but are much less common at middle latitudes. Ice water content and maximum backscatter (βmax) are highly correlated, where the slope depends on latitude. This allows to combine data sets from satellites and lidars. Furthermore, IWC and the concentration of water vapor at βmax are also strongly correlated. Nearly all trends depend on a lower limit applied for βmax, e.g., IWC and occurrence rates. Results from LIMA/MIMAS are in very good agreement with observations.
- ItemMesospheric temperature soundings with the new, daylight-capable IAP RMR lidar(München : European Geopyhsical Union, 2016) Gerding, Michael; Kopp, Maren; Höffner, Josef; Baumgarten, Kathrin; Lübken, Franz-JosefTemperature measurements by lidar are an important tool for the understanding of the mean state of the atmosphere as well as the propagation of gravity waves and thermal tides. Though, mesospheric lidar soundings are often limited to nighttime conditions (e.g., solar zenith angle > 96°) due to the low signal-to-noise ratio during the day. By this, examination of long-period gravity waves and tides is inhibited, as well as soundings in summer at polar latitudes. We developed a new daylight-capable Rayleigh–Mie–Raman (RMR) lidar at our site in Kühlungsborn, Germany (54° N, 12° E), that is in routine operation since 2010 for temperature soundings up to 90 km or ∼ 75 km (night or day) and soundings of noctilucent clouds. Here we describe the setup of the system with special emphasis on the daylight suppression methods like spatial and spectral filtering. The small bandwidth of the Fabry–Pérot etalons for spectral filtering of the received signal induces an altitude-dependent transmission of the detector. As a result, the signal is no longer proportional to the air density and the hydrostatic integration of the profile results in systematic temperature errors of up to 4 K. We demonstrate a correction method and the validity of correction by comparison with data obtained by our co-located, nighttime-only RMR lidar where no etalon is installed. As a further example a time series of temperature profiles between 20 and 80 km is presented for day and night of 9–10 March 2014. Together with the other data of March 2014 these profiles are used to calculate tidal amplitudes. It is found that tidal amplitudes vary between ∼ 1 and 5 K depending on altitude.
- ItemA Method for Retrieving Stratospheric Aerosol Extinction and Particle Size from Ground-Based Rayleigh-Mie-Raman Lidar Observations(Basel, Switzerland : MDPI AG, 2020) Zalach, Jacob; von Savigny, Christian; Langenbach, Arvid; Baumgarten, Gerd; Lübken, Franz-Josef; Bourassa, AdamWe report on the retrieval of stratospheric aerosol particle size and extinction coefficient profiles from multi-color backscatter measurements with the Rayleigh-Mie-Raman lidar operated at the Arctic Lidar Observatory for Middle Atmosphere Research (ALOMAR) in northern Norway. The retrievals are based on a two-step approach. In a first step, the median radius of an assumed monomodal log-normal particle size distribution with fixed width is retrieved based on a color index formed from the measured backscatter ratios at the wavelengths of 1064nm and 532 nm. An intrinsic ambiguity of the retrieved aerosol size information is discussed. In a second step, this particle size information is used to convert the measured lidar backscatter ratio to aerosol extinction coefficients. The retrieval is currently based on monthly-averaged lidar measurements and the results for March 2013 are discussed. A sensitivity study is presented that allows for establishing an error budget for the aerosol retrievals. Assuming a monomodal log-normal aerosol particle size distribution with a geometric width of S = 1.5, median radii on the order of below 100 nm are retrieved. The median radii are found to generally decrease with increasing altitude. The retrieved aerosol extinction profiles are compared to observations with the OSIRIS (Optical Spectrograph and InfraRed Imager System) and the OMPS-LP (Ozone Mapping Profiling Suite Limb Profiler) satellite instruments in the 60° N to 80° N latitude band. The extinction profiles that were retrieved from the lidar measurements show good agreement with the observations of the two satellite instruments when taking the different wavelengths of the instruments into account. © 2020 by the authors.
- ItemMIDAS - MIddel atmosphere Dynamics And Structure : Abschlussbericht zum Vorhaben(Hannover : Technische Informationsbibliothek (TIB), 2004) Lübken, Franz-Josef; Rapp, Markus[no abstract available]
- ItemPhotocurrent modelling and experimental confirmation for meteoric smoke particle detectors on board atmospheric sounding rockets(Katlenburg-Lindau : Copernicus, 2018-9-20) Giono, Gabriel; Strelnikov, Boris; Asmus, Heiner; Staszak, Tristan; Ivchenko, Nickolay; Lübken, Franz-JosefCharacterising the photoelectron current induced by the Sun's UV radiation is crucial to ensure accurate daylight measurements from particle detectors. This article lays out the methodology used to address this problem in the case of the meteoric smoke particle detectors (MSPDs), developed by the Leibniz Institute of Atmospheric Physics in Kühlungsborn (IAP) and flown on board the PMWEs (Polar Mesosphere Winter Echoes) sounding rockets in April 2018. The methodology focuses on two complementary aspects: modelling and experimental measurements. A detailed model of the MSPD photocurrent was created based on the expected solar UV flux, the atmospheric UV absorption as a function of height by molecular oxygen and ozone, the photoelectric yield of the material coating the MSPD as a function of wavelength, the index of refraction of these materials as a function of wavelength and the angle of incidence of the illumination onto the MSPD. Due to its complex structure, composed of a central electrode shielded by two concentric grids, extensive ray-tracing calculations were conducted to obtain the incidence angles of the illumination on the central electrode, and this was done for various orientations of the MSPD in respect to the Sun. Results of the modelled photocurrent at different heights and for different materials, as well as for different orientations of the detector, are presented. As a pre-flight confirmation, the model was used to reproduce the experimental measurements conducted by Robertson et al. (2014) and agrees within an order of magnitude. An experimental setup for the calibration of the MSPD photocurrent is also presented. The photocurrent induced by the Lyman-alpha line from a deuterium lamp was recorded inside a vacuum chamber using a narrowband filter, while a UV-sensitive photodiode was used to monitor the UV flux. These measurements were compared with the model prediction, and also matched within an order of magnitude. Although precisely modelling the photocurrent is a challenging task, this article quantitatively improved the understanding of the photocurrent on the MSPD and discusses possible strategies to untangle the meteoric smoke particles (MSPs) current from the photocurrent recorded in-flight.
- ItemPhysics in the mesosphere/lower thermosphere: A personal perspective(Lausanne : Frontiers Media, 2022) Lübken, Franz-JosefThe scope of this paper is to present some progress being made in the last few decades regarding some aspects of physical processes in the mesosphere/lower thermosphere and to point to some open questions. This summary is presented from a personal perspective, i.e., this is not a review of a certain science topic. Most citations reflect my own work or are representative examples only. They are not meant to be complete or comprehensive.
- ItemPhysik der kleinskaligen Schichten in der oberen Mososphäre: OPOSSUM : Schlussbericht zum Forschungsvorhaben(Hannover : Technische Informationsbibliothek (TIB), 2005) Lübken, Franz-Josef[no abstract available]
- ItemROMA - Rocketborne observations in the middle atmosphere : Abschlussbericht zum Vorhaben(Hannover : Technische Informationsbibliothek (TIB), 2008) Lübken, Franz-Josef; Rapp, Markus[no abstract available]
- ItemSimultaneous and co-located wind measurements in the middle atmosphere by lidar and rocket-borne techniques(München : European Geopyhsical Union, 2016) Lübken, Franz-Josef; Baumgarten, Gerd; Hildebrand, Jens; Schmidlin, Francis J.We present the first comparison of a new lidar technique to measure winds in the middle atmosphere, called DoRIS (Doppler Rayleigh Iodine Spectrometer), with a rocket-borne in situ method, which relies on measuring the horizontal drift of a target (“starute”) by a tracking radar. The launches took place from the Andøya Space Center (ASC), very close to the ALOMAR observatory (Arctic Lidar Observatory for Middle Atmosphere Research) at 69° N. DoRIS is part of a steerable twin lidar system installed at ALOMAR. The observations were made simultaneously and with a horizontal distance between the two lidar beams and the starute trajectories of typically 0–40 km only. DoRIS measured winds from 14 March 2015, 17:00 UTC, to 15 March 2015, 11:30 UTC. A total of eight starute flights were launched successfully from 14 March, 19:00 UTC, to 15 March, 00:19 UTC. In general there is excellent agreement between DoRIS and the in situ measurements, considering the combined range of uncertainties. This concerns not only the general height structures of zonal and meridional winds and their temporal developments, but also some wavy structures. Considering the comparison between all starute flights and all DoRIS observations in a time period of ±20 min around each individual starute flight, we arrive at mean differences of typically ±5–10 m s−1 for both wind components. Part of the remaining differences are most likely due to the detection of different wave fronts of gravity waves. There is no systematic difference between DoRIS and the in situ observations above 30 km. Below ∼ 30 km, winds from DoRIS are systematically too large by up to 10–20 m s−1, which can be explained by the presence of aerosols. This is proven by deriving the backscatter ratios at two different wavelengths. These ratios are larger than unity, which is an indication of the presence of aerosols.
- ItemSpatial and temporal variability in MLT turbulence inferred from in situ and ground-based observations during the WADIS-1 sounding rocket campaign(München : European Geopyhsical Union, 2017) Strelnikov, Boris; Szewczyk, Artur; Strelnikova, Irina; Latteck, Ralph; Baumgarten, Gerd; Lübken, Franz-Josef; Rapp, Markus; Löhle, Stefan; Eberhart, Martin; Hoppe, Ulf-Peter; Dunker, Tim; Friedrich, Martin; Hedin, Jonas; Khaplanov, Mikhail; Gumbel, Jörg; Barjatya, ArohIn summer 2013 the WADIS-1 sounding rocket campaign was conducted at the Andøya Space Center (ACS) in northern Norway (69° N, 16° E). Among other things, it addressed the question of the variability in mesosphere/lower thermosphere (MLT) turbulence, both in time and space. A unique feature of the WADIS project was multi-point turbulence sounding applying different measurement techniques including rocket-borne ionization gauges, VHF MAARSY radar, and VHF EISCAT radar near Tromsø. This allowed for horizontal variability to be observed in the turbulence field in the MLT at scales from a few to 100 km. We found that the turbulence dissipation rate, ε varied in space in a wavelike manner both horizontally and in the vertical direction. This wavelike modulation reveals the same vertical wavelengths as those seen in gravity waves. We also found that the vertical mean value of radar observations of ε agrees reasonably with rocket-borne measurements. In this way defined 〈εradar〉 value reveals clear tidal modulation and results in variation by up to 2 orders of magnitude with periods of 24 h. The 〈εradar〉 value also shows 12 h and shorter (1 to a few hours) modulations resulting in one decade of variation in 〈εradar〉 magnitude. The 24 h modulation appeared to be in phase with tidal change of horizontal wind observed by SAURA-MF radar. Such wavelike and, in particular, tidal modulation of the turbulence dissipation field in the MLT region inferred from our analysis is a new finding of this work.
- ItemTemporal variability of tidal and gravity waves during a record long 10-day continuous lidar sounding(München : European Geopyhsical Union, 2018) Baumgarten, Kathrin; Gerding, Michael; Baumgarten, Gerd; Lübken, Franz-JosefGravity waves (GWs) as well as solar tides are a key driving mechanism for the circulation in the Earth's atmosphere. The propagation of gravity waves is strongly affected by tidal waves as they modulate the mean background wind field and vice versa, which is not yet fully understood and not adequately implemented in many circulation models. The daylight-capable Rayleigh–Mie–Raman (RMR) lidar at Kühlungsborn (54°N, 12°E) typically provides temperature data to investigate both wave phenomena during one full day or several consecutive days in the middle atmosphere between 30 and 75km altitude. Outstanding weather conditions in May 2016 allowed for an unprecedented 10-day continuous lidar measurement, which shows a large variability of gravity waves and tides on timescales of days. Using a one-dimensional spectral filtering technique, gravity and tidal waves are separated according to their specific periods or vertical wavelengths, and their temporal evolution is studied. During the measurement period a strong 24h wave occurs only between 40 and 60km and vanishes after a few days. The disappearance is related to an enhancement of gravity waves with periods of 4–8h. Wind data provided by ECMWF are used to analyze the meteorological situation at our site. The local wind structure changes during the observation period, which leads to different propagation conditions for gravity waves in the last days of the measurement period and therefore a strong GW activity. The analysis indicates a further change in wave–wave interaction resulting in a minimum of the 24h tide. The observed variability of tides and gravity waves on timescales of a few days clearly demonstrates the importance of continuous measurements with high temporal and spatial resolution to detect interaction phenomena, which can help to improve parametrization schemes of GWs in general circulation models.