Browsing by Author "Lederer, Philip Lukas"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemGuaranteed upper bounds for the velocity error of pressure-robust Stokes discretisations(Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2020) Lederer, Philip Lukas; Merdon, ChristianThis paper improves guaranteed error control for the Stokes problem with a focus on pressure-robustness, i.e. for discretisations that compute a discrete velocity that is independent of the exact pressure. A Prager-Synge type result relates the errors of divergence-free primal and H(div)-conforming dual mixed methods (for the velocity gradient) with an equilibration constraint that needs special care when discretised. To relax the constraints on the primal and dual method, a more general result is derived that enables the use of a recently developed mass conserving mixed stress discretisation to design equilibrated fluxes that yield pressure-independent guaranteed upper bounds for any pressure-robust (but not necessarily divergence-free) primal discretisation. Moreover, a provably efficient local design of the equilibrated fluxes is presented that reduces the numerical costs of the error estimator. All theoretical findings are verified by numerical examples which also show that the efficiency indices of our novel guaranteed upper bounds for the velocity error are close to 1.
- ItemRefined a posteriori error estimation for classical and pressure-robust Stokes finite element methods(Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2017) Lederer, Philip Lukas; Merdon, Christian; Schöberl, JoachimRecent works showed that pressure-robust modifications of mixed finite element methods for the Stokes equations outperform their standard versions in many cases. This is achieved by divergence-free reconstruction operators and results in pressure-independent velocity error estimates which are robust with respect to small viscosities. In this paper we develop a posteriori error control which reflects this robustness. The main difficulty lies in the volume contribution of the standard residual-based approach that includes the L2-norm of the right-hand side. However, the velocity is only steered by the divergence-free part of this source term. An efficient error estimator must approximate this divergence-free part in a proper manner, otherwise it can be dominated by the pressure error. To overcome this difficulty a novel approach is suggested that uses arguments from the stream function and vorticity formulation of the NavierStokes equations. The novel error estimators only take the curl of the righthand side into account and so lead to provably reliable, efficient and pressure-independent upper bounds in case of a pressure-robust method in particular in pressure-dominant situations. This is also confirmed by some numerical examples with the novel pressure-robust modifications of the TaylorHood and mini finite element methods.