Browsing by Author "Möller, Andris"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemA gradient formula for linear chance constraints under Gaussian distribution(Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2012) Henrion, René; Möller, AndrisWe provide an explicit gradient formula for linear chance constraints under a (possibly singular) multivariate Gaussian distribution. This formula allows one to reduce the calculus of gradients to the calculus of values of the same type of chance constraints (in smaller dimension and with different distribution parameters). This is an important aspect for the numerical solution of stochastic optimization problems because existing efficient codes for e.g., calculating singular Gaussian distributions or regular Gaussian probabilities of polyhedra can be employed to calculate gradients at the same time. Moreover, the precision of gradients can be controlled by that of function values which is a great advantage over using finite difference approximations. Finally, higher order derivatives are easily derived explicitly. The use of the obtained formula is illustrated for an example of a transportation network with stochastic demands.
- ItemA mixed-integer stochastic nonlinear optimization problem with joint probabilistic constraints(Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2013) Arnold, Thomas; Henrion, René; Möller, Andris; Vigerske, StefanWe illustrate the solution of a mixed-integer stochastic nonlinear optimization problem in an application of power management. In this application, a coupled system consisting of a hydro power station and a wind farm is considered. The objective is to satisfy the local energy demand and sell any surplus energy on a spot market for a short time horizon. Generation of wind energy is assumed to be random, so that demand satisfaction is modeled by a joint probabilistic constraint taking into account the multivariate distribution. The turbine is forced to either operate between given positive limits or to be shut down. This introduces additional binary decisions. The numerical solution procedure is presented and results are illustrated.
- ItemProbabilistic constraints via SQP solver: Application to a renewable energy management problem(Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2014) Bremer, Ingo; Henrion, René; Möller, AndrisThe aim of this paper is to illustrate the efficient solution of nonlinear optimization problems with joint probabilistic constraints by means of an SQP method. Here, the random vector is assumed to obey some multivariate Gaussian distribution. The numerical solution approach is applied to a renewable energy management problem. We consider a coupled system of hydro and wind power production used in order to satisfy some local demand of energy and to sell/buy excessive or missing energy on a day-ahead and intraday market, respectively. A short term planning horizon of 2 days is considered and only wind power is assumed to be random. In the first part of the paper, we develop an appropriate optimization problem involving a probabilistic constraint reflecting demand satisfaction. Major attention will be payed to formulate this probabilistic constraint not directly in terms of random wind energy produced but rather in terms of random wind speed, in order to benefit from a large data base for identifying an appropriate distribution of the random parameter. The second part presents some details on integrating Genz' code for Gaussian probabilities of rectangles into the environment of the SQP solver SNOPT. The procedure is validated by means of a simplified optimization problem which by its convex structure allows to estimate the gap between the numerical and theoretical optimal values, respectively. In the last part, numerical results are presented and discussed for the original (nonconvex) optimization problem.