Browsing by Author "Müller, R."
Now showing 1 - 11 of 11
Results Per Page
Sort Options
- ItemDesign of a scalable AuNP catalyst system for plasmon-driven photocatalysis(Cambridge : Royal Society of Chemistry, 2018) Stolle, H.L.K.S.; Garwe, F.; Müller, R.; Krech, T.; Oberleiter, B.; Rainer, T.; Fritzsche, W.; Stolle, A.In this work we present a simple, fast and cost-efficient synthesis of a metal nanoparticle catalyst on a glass support for plasmon driven heterogeneous photocatalysis. It is based on efficient mixing of metal salts as particle precursors with porous glass as the supporting material in a mixer ball mill, and the subsequent realization of a complete catalyst system by laser sintering the obtained powder on a glass plate as the support. By this, we could obtain catalyst systems with a high particle proportion and an even spatial particle distribution in a rapid process, which could be applied to various kinds of metal salt resulting in plasmon active metal nanoparticles. Furthermore, the catalyst production process presented here is easily scalable to any size of area that is to be coated. Finally, we demonstrate the catalytic performance of our catalysts by a model reaction of ethanol degradation in a self-designed lab-scale reactor.
- ItemThe Filter Imager SuFI and the Image Stabilization and Light Distribution System ISLiD of the Sunrise Balloon-Borne Observatory: Instrument Description(Dordrecht [u.a.] : Springer Science + Business Media, 2011) Gandorfer, A.; Grauf, B.; Barthol, P.; Riethmüller, T.L.; Solanki, S.K.; Chares, B.; Deutsch, W.; Ebert, S.; Feller, A.; Germerott, D.; Heerlein, K.; Heinrichs, J.; Hirche, D.; Hirzberger, J.; Kolleck, M.; Meller, R.; Müller, R.; Schäfer, R.; Tomasch, G.; Knölker, M.; Martínez Pillet, V.; Bonet, J.A.; Schmidt, W.; Berkefeld, T.; Feger, B.; Heidecke, F.; Soltau, D.; Tischenberg, A.; Fischer, A.; Title, A.; Anwand, H.; Schmidt, E.We describe the design of the Sunrise Filter Imager (SuFI) and the Image Stabilization and Light Distribution (ISLiD) unit onboard the Sunrise balloon borne solar observatory. This contribution provides the necessary information which is relevant to understand the instruments' working principles, the relevant technical data, and the necessary information about calibration issues directly related to the science data. © 2010 The Author(s).
- ItemFrequency dependence of magnetothermal properties for magnetic fluid and magnetically functionalized implants(Les Ulis : EDP Sciences, 2018) Salakhova, R.T.; Vylegzhanin, A. G.; Kashtanov, E.A.; Zverev, V.I.; Müller, R.; de Sena Pereira, F.D.; Parfenov, V.A.; Mironov, V.A.; Kritskaya, E.A.; Pyatakov, A.P.; Markov, V.K.; Malyshev, A.Yu; Kamilov, K.I; Tishin, A.M; Perov, N.; Semisalova, A.Heating of the magnetic nanoparticles in AC magnetic field is the effect promising for application in medicine. The mechanisms of heating in AC-magnetic field implies nontrivial dependence of the power dissipated by magnetic nanoparticles on frequency. With the use of a reconfigurable experimental setup, this frequency-dependent magnetic heating was measured on two characteristic examples: the magnetite nanoparticles conventionally used in medicine and polymer coating with micrometer sized magnetite particles. The saturation of the heating power with frequency is shown that is more pronounced for the second case of microparticles.
- ItemGlass Ceramic Composites for Microsystems(Offenbach : Verlag der Deutschen Glastechnischen Gesellschaft, 2003) Schiller, W. A.; Eberstein, M.; Müller, R.[no abstract available]
- ItemGrundlagenuntersuchungen zur Leistungs- und Lebensdauerbegrenzung, Alterung und Verspannung von Hochleistungslaserdioden : Schlussbericht(Berlin : Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, 2002) Tomm, J.W.; Bärwolff, A.; Lienau, Ch.; Malyarchuk, V.; Müller, R.; Schwirzke-Schaaf, S.; Thamm, E.; Tischer, M.[no abstract available]
- ItemThe Polarimetric and Helioseismic Imager on Solar Orbiter(Les Ulis : EDP Sciences , 2020) Solanki, S.K.; del Toro Iniesta, J.C.; Woch, J.; Gandorfer, A.; Hirzberger, J.; Alvarez-Herrero, A.; Appourchaux, T.; Martínez Pillet, V.; Pérez-Grande, I.; Sanchis Kilders, E.; Schmidt, W.; Garranzo-García, D.; Laguna, H.; Martín, J.A.; Navarro, R.; Villanueva, J.; Núñez Peral, A.; Royo, M.; Sánchez, A.; Silva-López, M.; Fourmond, J.-J.; Berkefeld, Th.; Ruiz de Galarreta, C.; Bouzit, M.; Hervier, V.; Le Clec'h, J.C.; Szwec, N.; Chaigneau, M.; Buttice, V.; Volkmer, R.; Dominguez-Tagle, C.; Philippon, A.; Baumgartner, J.; Boumier, P.; Le Cocguen, R.; Baranjuk, G.; Bell, A.; Heidecke, F.; Maue, T.; Blanco Rodríguez, J.; Nakai, E.; Scheiffelen, T.; Sigwarth, M.; Soltau, D.; Domingo, V.; Fiethe, B.; Ferreres Sabater, A.; Gasent Blesa, J.L.; Rodríguez Martínez, P.; Osorno Caudel, D.; Bosch, J.; Casas, A.; Carmona, M.; Gómez Cama, J.M.; Herms, A.; Roma, D.; Guan, Y.; Alonso, G.; Gómez-Sanjuan, A.; Piqueras, J.; Torralbo, I.; Lange, T.; Michel, H.; Michalik, H.; Bonet, J.A.; Fahmy, S.; Müller, D.; Zouganelis, I.; Deutsch, W.; Busse, D.; Fernandez-Rico, G.; Grauf, B.; Gizon, L.; Heerlein, K.; Kolleck, M.; Lagg, A.; Meller, R.; Müller, R.; Schühle, U.; Staub, J.; Enge, R.; Albert, K.; Alvarez Copano, M.; Beckmann, U.; Bischoff, J.; Frahm, S.; Germerott, D.; Guerrero, L.; Löptien, B.; Meierdierks, T.; Oberdorfer, D.; Papagiannaki, I.; Ramanath, S.; Bellot Rubio, L.R.; Schou, J.; Werner, S.; Yang, D.; Zerr, A.; Bergmann, M.; Bochmann, J.; Heinrichs, J.; Meyer, S.; Monecke, M.; Müller, M.-F.; Cobos Carracosa, J.P.; Sperling, M.; Álvarez García, D.; Aparicio, B.; Balaguer Jiménez, M.; Girela, F.; Hernández Expósito, D.; Herranz, M.; Labrousse, P.; López Jiménez, A.; Orozco Suárez, D.; Ramos, J.L.; Barandiarán, J.; Vera, I.; Bastide, L.; Campuzano, C.; Cebollero, M.; Dávila, B.; Fernández-Medina, A.; García Parejo, P.This paper describes the Polarimetric and Helioseismic Imager on the Solar Orbiter mission (SO/PHI), the first magnetograph and helioseismology instrument to observe the Sun from outside the Sun-Earth line. It is the key instrument meant to address the top-level science question: How does the solar dynamo work and drive connections between the Sun and the heliosphere? SO/PHI will also play an important role in answering the other top-level science questions of Solar Orbiter, as well as hosting the potential of a rich return in further science. SO/PHI measures the Zeeman effect and the Doppler shift in the FeI 617.3nm spectral line. To this end, the instrument carries out narrow-band imaging spectro-polarimetry using a tunable LiNbO_3 Fabry-Perot etalon, while the polarisation modulation is done with liquid crystal variable retarders (LCVRs). The line and the nearby continuum are sampled at six wavelength points and the data are recorded by a 2kx2k CMOS detector. To save valuable telemetry, the raw data are reduced on board, including being inverted under the assumption of a Milne-Eddington atmosphere, although simpler reduction methods are also available on board. SO/PHI is composed of two telescopes; one, the Full Disc Telescope (FDT), covers the full solar disc at all phases of the orbit, while the other, the High Resolution Telescope (HRT), can resolve structures as small as 200km on the Sun at closest perihelion. The high heat load generated through proximity to the Sun is greatly reduced by the multilayer-coated entrance windows to the two telescopes that allow less than 4% of the total sunlight to enter the instrument, most of it in a narrow wavelength band around the chosen spectral line.
- ItemPreparation of Core-Shell Hybrid Materials by Producing a Protein Corona Around Magnetic Nanoparticles(New York, NY [u.a.] : Springer, 2015) Weidner, A.; Gräfe, C.; von der Lühe, M.; Remmer, H.; Clement, J.H.; Eberbeck, D.; Ludwig, F.; Müller, R.; Schacher, F.H.; Dutz, S.Nanoparticles experience increasing interest for a variety of medical and pharmaceutical applications. When exposing nanomaterials, e.g., magnetic iron oxide nanoparticles (MNP), to human blood, a protein corona consisting of various components is formed immediately. The composition of the corona as well as its amount bound to the particle surface is dependent on different factors, e.g., particle size and surface charge. The actual composition of the formed protein corona might be of major importance for cellular uptake of magnetic nanoparticles. The aim of the present study was to analyze the formation of the protein corona during in vitro serum incubation in dependency of incubation time and temperature. For this, MNP with different shells were incubated in fetal calf serum (FCS, serving as protein source) within a water bath for a defined time and at a defined temperature. Before and after incubation the particles were characterized by a variety of methods. It was found that immediately (seconds) after contact of MNP and FCS, a protein corona is formed on the surface of MNP. This formation led to an increase of particle size and a slight agglomeration of the particles, which was relatively constant during the first minutes of incubation. A longer incubation (from hours to days) resulted in a stronger agglomeration of the FCS incubated MNP. Quantitative analysis (gel electrophoresis) of serum-incubated particles revealed a relatively constant amount of bound proteins during the first minutes of serum incubation. After a longer incubation (>20 min), a considerably higher amount of surface proteins was determined for incubation temperatures below 40 °C. For incubation temperatures above 50 °C, the influence of time was less significant which might be attributed to denaturation of proteins during incubation. Overall, analysis of the molecular weight distribution of proteins found in the corona revealed a clear influence of incubation time and temperature on corona composition.
- ItemSimultaneous lidar observations of a polar stratospheric cloud on the east and west sides of the Scandinavian mountains and microphysical box model simulations(München : European Geopyhsical Union, 2006) Blum, U.; Khosrawi, F.; Baumgarten, G.; Stebel, K.; Müller, R.; Fricke, K.H.The importance of polar stratospheric clouds (PSC) for polar ozone depletion is well established. Lidar experiments are well suited to observe and classify polar stratospheric clouds. On 5 January 2005 a PSC was observed simultaneously on the east and west sides of the Scandinavian mountains by ground-based lidars. This cloud was composed of liquid particles with a mixture of solid particles in the upper part of the cloud. Multi-colour measurements revealed that the liquid particles had a mode radius of r≈300 nm, a distribution width of σ≈1.04 and an altitude dependent number density of N≈2–20 cm−3. Simulations with a microphysical box model show that the cloud had formed about 20 h before observation. High HNO3 concentrations in the PSC of 40–50 weight percent were simulated in the altitude regions where the liquid particles were observed, while this concentration was reduced to about 10 weight percent in that part of the cloud where a mixture between solid and liquid particles was observed by the lidar. The model simulations also revealed a very narrow particle size distribution with values similar to the lidar observations. Below and above the cloud almost no HNO3 uptake was simulated. Although the PSC shows distinct wave signatures, no gravity wave activity was observed in the temperature profiles measured by the lidars and meteorological analyses support this observation. The observed cloud must have formed in a wave field above Iceland about 20 h prior to the measurements and the cloud wave pattern was advected by the background wind to Scandinavia. In this wave field above Iceland temperatures potentially dropped below the ice formation temperature, so that ice clouds may have formed which can act as condensation nuclei for the nitric acid trihydrate (NAT) particles observed at the cloud top above Esrange.
- ItemSqualenyl Hydrogen Sulfate Nanoparticles for Simultaneous Delivery of Tobramycin and an Alkylquinolone Quorum Sensing Inhibitor Enable the Eradication of P. aeruginosa Biofilm Infections(Weinheim : Wiley-VCH Verlag, 2020) Ho, D.-K.; Murgia, X.; De Rossi, C.; Christmann, R.; Hüfner de Mello Martins, A.G.; Koch, M.; Andreas, A.; Herrmann, J.; Müller, R.; Empting, M.; Hartmann, R.W.; Desmaele, D.; Loretz, B.; Couvreur, P.; Lehr, C.-M.Elimination of pulmonary Pseudomonas aeruginosa (PA) infections is challenging to accomplish with antibiotic therapies, mainly due to resistance mechanisms. Quorum sensing inhibitors (QSIs) interfering with biofilm formation can thus complement antibiotics. For simultaneous and improved delivery of both active agents to the infection sites, self-assembling nanoparticles of a newly synthesized squalenyl hydrogen sulfate (SqNPs) were prepared. These nanocarriers allowed for remarkably high loading capacities of hydrophilic antibiotic tobramycin (Tob) and a novel lipophilic QSI at 30 % and circa 10 %, respectively. The drug-loaded SqNPs showed improved biofilm penetration and enhanced efficacy in relevant biological barriers (mucin/human tracheal mucus, biofilm), leading to complete eradication of PA biofilms at circa 16-fold lower Tob concentration than Tob alone. This study offers a viable therapy optimization and invigorates the research and development of QSIs for clinical use.
- ItemStructural properties of magnetic nanoparticles determine their heating behavior - an estimation of the in vivo heating potential(New York, NY [u.a.] : Springer, 2014) Ludwig, R.; Stapf, M.; Dutz, S.; Müller, R.; Teichgräber, U.; Hilger, I.Magnetically induced heating of magnetic nanoparticles (MNP) in an alternating magnetic field (AMF) is a promising minimally invasive tool for localized tumor treatment by sensitizing or killing tumor cells with the help of thermal stress. Therefore, the selection of MNP exhibiting a sufficient heating capacity (specific absorption rate, SAR) to achieve satisfactory temperatures in vivo is necessary. Up to now, the SAR of MNP is mainly determined using ferrofluidic suspensions and may distinctly differ from the SAR in vivo due to immobilization of MNP in tissues and cells. The aim of our investigations was to study the correlation between the SAR and the degree of MNP immobilization in dependence of their physicochemical features.In this study, the included MNP exhibited varying physicochemical properties and were either made up of single cores or multicores. Whereas the single core MNP exhibited a core size of approximately 15 nm, the multicore MNP consisted of multiple smaller single cores (5 to 15 nm) with 65 to 175 nm diameter in total. Furthermore, different MNP coatings, including dimercaptosuccinic acid (DMSA), polyacrylic acid (PAA), polyethylenglycol (PEG), and starch, wereinvestigated. SAR values were determined after the suspension of MNP in water. MNP immobilization in tissues was simulated with 1% agarose gels and 10% polyvinyl alcohol (PVA) hydrogels.The highest SAR values were observed in ferrofluidic suspensions, whereas a strong reduction of the SAR after the immobilization of MNP with PVA was found. Generally, PVA embedment led to a higher immobilization of MNP compared to immobilization in agarose gels. The investigated single core MNP exhibited higher SAR values than the multicore MNP of the same core size within the used magnetic field parameters. Multicore MNP manufactured via different synthesis routes (fluidMAG-D, fluidMAG/12-D) showed different SAR although they exhibited comparable core and hydrodynamic sizes. Additionally, no correlation between ζ-potential and SAR values after immobilization was observed.Our data show that immobilization of MNP, independent of their physicochemical properties, can distinctly affect their SAR. Similar processes are supposed to take place in vivo, particularly when MNP are immobilized in cells and tissues. This aspect should be adequately considered when determining the SAR of MNP for magnetic hyperthermia.
- ItemThe Sunrise Mission(Dordrecht [u.a.] : Springer Science + Business Media, 2010) Barthol, P.; Gandorfer, A.; Solanki, S.K.; Schüssler, M.; Chares, B.; Curdt, W.; Deutsch, W.; Feller, A.; Germerott, D.; Grauf, B.; Heerlein, K.; Hirzberger, J.; Kolleck, M.; Meller, R.; Müller, R.; Riethmüller, T.L.; Tomasch, G.; Knölker, M.; Lites, B.W.; Card, G.; Elmore, D.; Fox, J.; Lecinski, A.; Nelson, P.; Summers, R.; Watt, A.; Martínez Pillet, V.; Bonet, J.A.; Schmidt, W.; Berkefeld, T.; Title, A.M.; Domingo, V.; Gasent Blesa, J.L.; del Toro, Iniesta, J.C.; López Jiménez, A.; Álvarez-Herrero, A.; Sabau-Graziati, L.; Widani, C.; Haberler, P.; Härtel, K.; Kampf, D.; Levin, T.; Pérez Grande, I.; Sanz-Andrés, A.; Schmidt, E.The first science flight of the balloon-borne Sunrise telescope took place in June 2009 from ESRANGE (near Kiruna/Sweden) to Somerset Island in northern Canada. We describe the scientific aims and mission concept of the project and give an overview and a description of the various hardware components: the 1-m main telescope with its postfocus science instruments (the UV filter imager SuFI and the imaging vector magnetograph IMaX) and support instruments (image stabilizing and light distribution system ISLiD and correlating wavefront sensor CWS), the optomechanical support structure and the instrument mounting concept, the gondola structure and the power, pointing, and telemetry systems, and the general electronics architecture. We also explain the optimization of the structural and thermal design of the complete payload. The preparations for the science flight are described, including AIV and ground calibration of the instruments. The course of events during the science flight is outlined, up to the recovery activities. Finally, the in-flight performance of the instrumentation is discussed. © 2010 The Author(s).