Repository logo
  • English
  • Deutsch
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • Home
  • Browse
    About
  1. Home
  2. Browse by Author

Browsing by Author "Natan, A."

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Attosecond time-resolved photoelectron holography
    ([London] : Nature Publishing Group UK, 2018) Porat, G.; Alon, G.; Rozen, S.; Pedatzur, O.; Krüger, M.; Azoury, D.; Natan, A.; Orenstein, G.; Bruner, B.D.; Vrakking, M. J.J.; Dudovich, N.
    Ultrafast strong-field physics provides insight into quantum phenomena that evolve on an attosecond time scale, the most fundamental of which is quantum tunneling. The tunneling process initiates a range of strong field phenomena such as high harmonic generation (HHG), laser-induced electron diffraction, double ionization and photoelectron holography - all evolving during a fraction of the optical cycle. Here we apply attosecond photoelectron holography as a method to resolve the temporal properties of the tunneling process. Adding a weak second harmonic (SH) field to a strong fundamental laser field enables us to reconstruct the ionization times of photoelectrons that play a role in the formation of a photoelectron hologram with attosecond precision. We decouple the contributions of the two arms of the hologram and resolve the subtle differences in their ionization times, separated by only a few tens of attoseconds.
  • Loading...
    Thumbnail Image
    Item
    Experimental strategies for optical pump - Soft x-ray probe experiments at the LCLS
    (Bristol : Institute of Physics Publishing, 2014) McFarland, B.K.; Berrah, N.; Bostedt, C.; Bozek, J.; Bucksbaum, P.H.; Castagna, J.C.; Coffee, R.N.; Cryan, J.P.; Fang, L.; Farrell, J.P.; Feifel, R.; Gaffney, K.J.; Glownia, J.M.; Martinez, T.J.; Miyabe, S.; Mucke, M.; Murphy, B.; Natan, A.; Osipov, T.; Petrovic, V.S.; Schorb, S.; Schultz, T.; Spector, L.S.; Swiggers, M.; Tarantelli, F.; Tenney, I.; Wang, S.; White, J.L.; White, W.; Gühr, M.
    Free electron laser (FEL) based x-ray sources show great promise for use in ultrafast molecular studies due to the short pulse durations and site/element sensitivity in this spectral range. However, the self amplified spontaneous emission (SASE) process mostly used in FELs is intrinsically noisy resulting in highly fluctuating beam parameters. Additionally timing synchronization of optical and FEL sources adds delay jitter in pump-probe experiments. We show how we mitigate the effects of source noise for the case of ultrafast molecular spectroscopy of the nucleobase thymine. Using binning and resorting techniques allows us to increase time and spectral resolution. In addition, choosing observables independent of noisy beam parameters enhances the signal fidelity.
  • Loading...
    Thumbnail Image
    Item
    Probing nucleobase photoprotection with soft x-rays
    (Les Ulis : EDP Sciences, 2013) McFarland, B.K.; Farrell, J.P.; Berrah, N.; Bostedt, C.; Bozek, J.; Bucksbaum, P.H.; Coffee, R.; Cryan, J.; Fang, L.; Feifel, R.; Gaffney, K.; Glownia, J.; Martinez, T.; Mucke, M.; Murphy, B.; Miyabe, S.; Natan, A.; Osipov, T.; Petrovic, V.; Schorb, S.; Schultz, T.; Spector, L.; Tarantelli, F.; Tenney, I.; Wang, S.; White, W.; White, J.; Gühr, M.
    Nucleobases absorb strongly in the ultraviolet region, leading to molecular excitation into reactive states. The molecules avoid the photoreactions by funnelling the electronic energy into less reactive states on an ultrafast timescale via non-Born-Oppenheimer dynamics. Current theory on the nucleobase thymine discusses two conflicting pathways for the photoprotective dynamics. We present our first results of our free electron laser based UV-pump soft x-ray-probe study of the photoprotection mechanism of thymine. We use the high spatial sensitivity of the Auger electrons emitted after the soft x-ray pulse induced core ionization. Our transient spetra show two timescales on the order of 200 fs and 5 ps, in agreement with previous (all UV) ultrafast experiments. The timescales appear at different Auger kinetic energies which will help us to decipher the molecular dynamics.
unread
  • Imprint
  • Privacy policy
  • Accessibility
unread