Browsing by Author "Nejdl, Wolfgang"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemRobust Fusion of Time Series and Image Data for Improved Multimodal Clinical Prediction(New York, NY : IEEE, 2024) Rasekh, Ali; Heidari, Reza; Hosein Haji Mohammad Rezaie, Amir; Sharifi Sedeh, Parsa; Ahmadi, Zahra; Mitra, Prasenjit; Nejdl, WolfgangWith the increasing availability of diverse data types, particularly images and time series data from medical experiments, there is a growing demand for techniques designed to combine various modalities of data effectively. Our motivation comes from the important areas of predicting mortality and phenotyping where using different modalities of data could significantly improve our ability to predict. To tackle this challenge, we introduce a new method that uses two separate encoders, one for each type of data, allowing the model to understand complex patterns in both visual and time-based information. Apart from the technical challenges, our goal is to make the predictive model more robust in noisy conditions and perform better than current methods. We also deal with imbalanced datasets and use an uncertainty loss function, yielding improved results while simultaneously providing a principled means of modeling uncertainty. Additionally, we include attention mechanisms to fuse different modalities, allowing the model to focus on what's important for each task. We tested our approach using the comprehensive multimodal MIMIC dataset, combining MIMIC-IV and MIMIC-CXR datasets. Our experiments show that our method is effective in improving multimodal deep learning for clinical applications. The code for this work is publicly available at: https://github.com/AliRasekh/TSImageFusion.
- ItemTowards an Open Research Knowledge Graph(Zenodo, 2018) Auer, Sören; Blümel, Ina; Ewerth, Ralph; Garatzogianni, Alexandra; Heller,, Lambert; Hoppe, Anett; Kasprzik, Anna; Koepler, Oliver; Nejdl, Wolfgang; Plank, Margret; Sens, Irina; Stocker, Markus; Tullney, Marco; Vidal, Maria-Esther; van Wezenbeek, WilmaThe document-oriented workflows in science have reached (or already exceeded) the limits of adequacy as highlighted for example by recent discussions on the increasing proliferation of scientific literature and the reproducibility crisis. Despite an improved and digital access to scientific publications in the last decades, the exchange of scholarly knowledge continues to be primarily document-based: Researchers produce essays and articles that are made available in online and offline publication media as roughly granular text documents. With current developments in areas such as knowledge representation, semantic search, human-machine interaction, natural language processing, and artificial intelligence, it is possible to completely rethink this dominant paradigm of document-centered knowledge exchange and transform it into knowledge-based information flows by representing and expressing knowledge through semantically rich, interlinked knowledge graphs. The core of the establishment of knowledge-based information flows is the distributed, decentralized, collaborative creation and evolution of information models, vocabularies, ontologies, and knowledge graphs for the establishment of a common understanding of data and information between the various stakeholders as well as the integration of these technologies into the infrastructure and processes of search and knowledge exchange in the research library of the future. By integrating these information models into existing and new research infrastructure services, the information structures that are currently still implicit and deeply hidden in documents can be made explicit and directly usable. This revolutionizes scientific work because information and research results can be seamlessly interlinked with each other and better mapped to complex information needs. As a result, scientific work becomes more effective and efficient, since results become directly comparable and easier to reuse. In order to realize the vision of knowledge-based information flows in scholarly communication, comprehensive long-term technological infrastructure development and accompanying research are required. To secure information sovereignty, it is also of paramount importance to science – and urgency to science policymakers – that scientific infrastructures establish an open counterweight to emerging commercial developments in this area. The aim of this position paper is to facilitate the discussion on requirements, design decisions and a minimum viable product for an Open Research Knowledge Graph infrastructure. TIB aims to start developing this infrastructure in an open collaboration with interested partner organizations and individuals.