Browsing by Author "Nisantzi, Argyro"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- ItemEffects of Aerosols and Clouds on the Levels of Surface Solar Radiation and Solar Energy in Cyprus(Basel : MDPI, 2021) Fountoulakis, Ilias; Kosmopoulos, Panagiotis; Papachristopoulou, Kyriakoula; Raptis, Ioannis-Panagiotis; Mamouri, Rodanthi-Elisavet; Nisantzi, Argyro; Gkikas, Antonis; Witthuhn, Jonas; Bley, Sebastian; Moustaka, Anna; Buehl, Johannes; Seifert, Patric; Hadjimitsis, Diofantos G.; Kontoes, Charalampos; Kazadzis, SteliosCyprus plans to drastically increase the share of renewable energy sources from 13.9% in 2020 to 22.9% in 2030. Solar energy can play a key role in the effort to fulfil this goal. The potential for production of solar energy over the island is much higher than most of European territory because of the low latitude of the island and the nearly cloudless summers. In this study, high quality and fine resolution satellite retrievals of aerosols and dust, from the newly developed MIDAS climatology, and information for clouds from CM SAF are used in order to quantify the effects of aerosols, dust, and clouds on the levels of surface solar radiation for 2004–2017 and the corresponding financial loss for different types of installations for the production of solar energy. Surface solar radiation climatology has also been developed based on the above information. Ground-based measurements were also incorporated to study the contribution of different species to the aerosol mixture and the effects of day-to-day variability of aerosols on SSR. Aerosols attenuate 5–10% of the annual global horizontal irradiation and 15–35% of the annual direct normal irradiation, while clouds attenuate 25–30% and 35–50% respectively. Dust is responsible for 30–50% of the overall attenuation by aerosols and is the main regulator of the variability of total aerosol. All-sky annual global horizontal irradiation increased significantly in the period of study by 2%, which was mainly attributed to changes in cloudiness.
- ItemExtreme dust storm over the eastern Mediterranean in September 2015: Satellite, lidar, and surface observations in the Cyprus region(München : European Geopyhsical Union, 2016) Mamouri, Rodanthi-Elisavet; Ansmann, Albert; Nisantzi, Argyro; Solomos, Stavros; Kallos, George; Hadjimitsis, Diofantos G.A record-breaking dust storm originating from desert regions in northern Syria and Iraq occurred over the eastern Mediterranean in September 2015. In this contribution of a series of two articles (part 1, observations; part 2, atmospheric modeling), we provide a comprehensive overview of the aerosol conditions during this extreme dust outbreak in the Cyprus region. These observations are based on satellite observations (MODIS, moderate resolution imaging spectroradiometer) of aerosol optical thickness (AOT) and Ångström exponent, surface particle mass (PM10) concentrations measured at four sites in Cyprus, visibility observations at three airports in southern Cyprus and corresponding conversion products (particle extinction coefficient, dust mass concentrations), EARLINET (European Aerosol Research Lidar Network) lidar observations of dust vertical layering over Limassol, particle optical properties (backscatter, extinction, lidar ratio, linear depolarization ratio), and derived profiles of dust mass concentrations. Maximum 550 nm AOT exceeded values of 5.0, according to MODIS, and the mass loads were correspondingly > 10 g m−2 over Larnaca and Limassol during the passage of an extremely dense dust front on 8 September 2015. Hourly mean PM10 values were close to 8000 µg m−3 and the observed meteorological optical range (visibility) was reduced to 300–750 m at Larnaca and Limassol. The visibility observations suggest peak values of the near-surface total suspended particle (TSP) extinction coefficients of 6000 Mm−1 and thus TSP mass concentrations of 10 000 µg m−3. The Raman polarization lidar observations mainly indicated a double layer structure of the dust plumes (reaching to about 4 km height), pointing to at least two different dust source regions. Dust particle extinction coefficients (532 nm) already exceeded 1000 Mm−1 and the mass concentrations reached 2000 µg m−3 in the elevated dust layers on 7 September, more than 12 h before the peak dust front on 8 September reached the Limassol lidar station around local noon. Typical Middle Eastern dust lidar ratios around 40 sr were observed in the dense dust plumes. The particle depolarization ratio decreased from around 0.3 in the lofted dense dust layers to 0.2 at the end of the dust period (11 September), indicating an increasing impact of anthropogenic haze.
- ItemIce-nucleating particle versus ice crystal number concentrationin altocumulus and cirrus layers embedded in Saharan dust: a closure study(Katlenburg-Lindau : EGU, 2019) Ansmann, Albert; Mamouri, Rodanthi-Elisavet; Bühl, Johannes; Seifert, Patric; Engelmann, Ronny; Hofer, Julian; Nisantzi, Argyro; Atkinson, James D.; Kanji, Zamin A.; Sierau, Berko; Vrekoussis, Mihalis; Sciare, JeanFor the first time, a closure study of the relationship between the ice-nucleating particle concentration (INP; INPC) and ice crystal number concentration (ICNC) in altocumulus and cirrus layers, solely based on groundbased active remote sensing, is presented. Such aerosol- cloud closure experiments are required (a) to better understand aerosol-cloud interaction in the case of mixed-phase clouds, (b) to explore to what extent heterogeneous ice nucleation can contribute to cirrus formation, which is usually controlled by homogeneous freezing, and (c) to check the usefulness of available INPC parameterization schemes, applied to lidar profiles of aerosol optical and microphysical properties up to the tropopause level. The INPC-ICNC closure studies were conducted in Cyprus (Limassol and Nicosia) during a 6-week field campaign in March-April 2015 and during the 17-month CyCARE (Cyprus Clouds Aerosol and Rain Experiment) campaign. The focus was on altocumulus and cirrus layers which developed in pronounced Saharan dust layers at heights from 5 to 11 km. As a highlight, a long-lasting cirrus event was studied which was linked to the development of a very strong dust-infused baroclinic storm (DIBS) over Algeria. The DIBS was associated with strong convective cloud development and lifted large amounts of Saharan dust into the upper troposphere, where the dust influenced the evolution of an unusually large anvil cirrus shield and the subsequent transformation into an cirrus uncinus cloud system extending from the eastern Mediterranean to central Asia, and thus over more than 3500 km. Cloud top temperatures of the three discussed closure study cases ranged from - 20 to -57 °C. The INPC was estimated from polarization/Raman lidar observations in combination with published INPC parameterization schemes, whereas the ICNC was retrieved from combined Doppler lidar, aerosol lidar, and cloud radar observations of the terminal velocity of falling ice crystals, radar reflectivity, and lidar backscatter in combination with the modeling of backscattering at the 532 and 8.5 mm wavelengths. A good-to-acceptable agreement between INPC (observed before and after the occurrence of the cloud layer under investigation) and ICNC values was found in the discussed three proof-of-concept closure experiments. In these case studies, INPC and ICNC values matched within an order of magnitude (i.e., within the uncertainty ranges of the INPC and ICNC estimates), and they ranged from 0.1 to 10 L-1 in the altocumulus layers and 1 to 50 L-1 in the cirrus layers observed between 8 and 11 km height. The successful closure experiments corroborate the important role of heterogeneous ice nucleation in atmospheric ice formation processes when mineral dust is present. The observed longlasting cirrus event could be fully explained by the presence of dust, i.e., without the need for homogeneous ice nucleation processes. © 2019 Author(s).
- ItemThe unprecedented 2017–2018 stratospheric smoke event: decay phase and aerosol properties observed with the EARLINET(Katlenburg-Lindau : EGU, 2019) Baars, Holger; Ansmann, Albert; Ohneiser, Kevin; Haarig, Moritz; Engelmann, Ronny; Althausen, Dietrich; Hanssen, Ingrid; Gausa, Michael; Pietruczuk, Aleksander; Szkop, Artur; Stachlewska, Iwona S.; Wang, Dongxiang; Reichardt, Jens; Skupin, Annett; Mattis, Ina; Trickl, Thomas; Vogelmann, Hannes; Navas-Guzmán, Francisco; Haefele, Alexander; Acheson, Karen; Ruth, Albert A.; Tatarov, Boyan; Müller, Detlef; Hu, Qiaoyun; Podvin, Thierry; Goloub, Philippe; Veselovskii, Igor; Pietras, Christophe; Haeffelin, Martial; Fréville, Patrick; Sicard, Michaël; Comerón, Adolfo; García, Alfonso Javier Fernández; Molero Menéndez, Francisco; Córdoba-Jabonero, Carmen; Guerrero-Rascado, Juan Luis; Alados-Arboledas, Lucas; Bortoli, Daniele; Costa, Maria João; Dionisi, Davide; Liberti, Gian Luigi; Wang, Xuan; Sannino, Alessia; Papagiannopoulos, Nikolaos; Boselli, Antonella; Mona, Lucia; D’Amico, Guiseppe; Romano, Salvatore; Perrone, Maria Rita; Belegante, Livio; Nicolae, Doina; Grigorov, Ivan; Gialitaki, Anna; Amiridis, Vassilis; Soupiona, Ourania; Papayannis, Alexandros; Mamouri, Rodanthi-Elisaveth; Nisantzi, Argyro; Heese, Birgit; Hofer, Julian; Schechner, Yoav Y.; Wandinger, Ulla; Pappalardo, GelsominaSix months of stratospheric aerosol observations with the European Aerosol Research Lidar Network (EARLINET) from August 2017 to January 2018 are presented. The decay phase of an unprecedented, record-breaking stratospheric perturbation caused by wildfire smoke is reported and discussed in terms of geometrical, optical, and microphysical aerosol properties. Enormous amounts of smoke were injected into the upper troposphere and lower stratosphere over fire areas in western Canada on 12 August 2017 during strong thunderstorm–pyrocumulonimbus activity. The stratospheric fire plumes spread over the entire Northern Hemisphere in the following weeks and months. Twenty-eight European lidar stations from northern Norway to southern Portugal and the eastern Mediterranean monitored the strong stratospheric perturbation on a continental scale. The main smoke layer (over central, western, southern, and eastern Europe) was found at heights between 15 and 20 km since September 2017 (about 2 weeks after entering the stratosphere). Thin layers of smoke were detected at heights of up to 22–23 km. The stratospheric aerosol optical thickness at 532 nm decreased from values > 0.25 on 21–23 August 2017 to 0.005–0.03 until 5–10 September and was mainly 0.003–0.004 from October to December 2017 and thus was still significantly above the stratospheric background (0.001–0.002). Stratospheric particle extinction coefficients (532 nm) were as high as 50–200 Mm−1 until the beginning of September and on the order of 1 Mm−1 (0.5–5 Mm−1) from October 2017 until the end of January 2018. The corresponding layer mean particle mass concentration was on the order of 0.05–0.5 µg m−3 over these months. Soot particles (light-absorbing carbonaceous particles) are efficient ice-nucleating particles (INPs) at upper tropospheric (cirrus) temperatures and available to influence cirrus formation when entering the tropopause from above. We estimated INP concentrations of 50–500 L−1 until the first days in September and afterwards 5–50 L−1 until the end of the year 2017 in the lower stratosphere for typical cirrus formation temperatures of −55 ∘C and an ice supersaturation level of 1.15. The measured profiles of the particle linear depolarization ratio indicated a predominance of nonspherical smoke particles. The 532 nm depolarization ratio decreased slowly with time in the main smoke layer from values of 0.15–0.25 (August–September) to values of 0.05–0.10 (October–November) and < 0.05 (December–January). The decrease of the depolarization ratio is consistent with aging of the smoke particles, growing of a coating around the solid black carbon core (aggregates), and thus change of the shape towards a spherical form. We found ascending aerosol layer features over the most southern European stations, especially over the eastern Mediterranean at 32–35∘ N, that ascended from heights of about 18–19 to 22–23 km from the beginning of October to the beginning of December 2017 (about 2 km per month). We discuss several transport and lifting mechanisms that may have had an impact on the found aerosol layering structures.
- ItemWildfire smoke triggers cirrus formation: Lidar observations over the eastern Mediterranean(Katlenburg-Lindau : EGU, 2023) Mamouri, Rodanthi-Elisavet; Ansmann, Albert; Ohneiser, Kevin; Knopf, Daniel A.; Nisantzi, Argyro; Bühl, Johannes; Engelmann, Ronny; Skupin, Annett; Seifert, Patric; Baars, Holger; Ene, Dragos; Wandinger, Ulla; Hadjimitsis, DiofantosThe number of intense wildfires may increase further in upcoming years as a consequence of climate change. It is therefore necessary to improve our knowledge about the role of smoke in the climate system, with emphasis on the impact of smoke particles on the evolution of clouds, precipitation, and cloud radiative properties. Presently, one key aspect of research is whether or not wildfire smoke particles can initiate cirrus formation. In this study, we present lidar observations over Limassol, Cyprus, from 27 October to 3 November 2020, when extended wildfire smoke fields crossed the Mediterranean Basin from Portugal to Cyprus. We found strong evidence that aged smoke (organic aerosol particles) originating from wildfires in North America triggered significant ice nucleation at temperatures from -47 to -53° C and caused the formation of extended cirrus layers. The observations suggest that the ice crystals were nucleated just below the tropopause in the presence of smoke particles serving as ice-nucleating particles (INPs). The main part of the 2-3km thick smoke layer was, however, in the lower stratosphere just above the tropopause. With actual radiosonde observations of temperature and relative humidity and lidar-derived smoke particle surface area concentrations used as starting values, gravity wave simulations show that the lofting of air by 100-200m is sufficient to initiate significant ice nucleation on the smoke particles, leading to ice crystal number concentrations of 1-100L-1.