Browsing by Author "Pereira, Sergio"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- ItemCALIPSO climatological products: Evaluation and suggestions from EARLINET(München : European Geopyhsical Union, 2016) Papagiannopoulos, Nikolaos; Mona, Lucia; Alados-Arboledas, Lucas; Amiridis, Vassilis; Baars, Holger; Binietoglou, Ioannis; Bortoli, Daniele; D'Amico, Giuseppe; Giunta, Aldo; Guerrero-Rascado, Juan Luis; Schwarz, Anja; Pereira, Sergio; Spinelli, Nicola; Wandinger, Ulla; Wang, Xuan; Pappalardo, GelsominaThe CALIPSO Level 3 (CL3) product is the most recent data set produced by the observations of the Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument onboard the Cloud–Aerosol Lidar and Pathfinder Satellite Observations (CALIPSO) space platform. The European Aerosol Research Lidar Network (EARLINET), based mainly on multi-wavelength Raman lidar systems, is the most appropriate ground-based reference for CALIPSO calibration/validation studies on a continental scale. In this work, CALIPSO data are compared against EARLINET monthly averaged profiles obtained by measurements performed during CALIPSO overpasses. In order to mitigate uncertainties due to spatial and temporal differences, we reproduce a modified version of CL3 data starting from CALIPSO Level 2 (CL2) data. The spatial resolution is finer and nearly 2° × 2° (latitude × longitude) and only simultaneous measurements are used for ease of comparison. The CALIPSO monthly mean profiles following this approach are called CALIPSO Level 3*, CL3*. We find good agreement on the aerosol extinction coefficient, yet in most of the cases a small CALIPSO underestimation is observed with an average bias of 0.02 km−1 up to 4 km and 0.003 km−1 higher above. In contrast to CL3 standard product, the CL3* data set offers the possibility to assess the CALIPSO performance also in terms of the particle backscatter coefficient keeping the same quality assurance criteria applied to extinction profiles. The mean relative difference in the comparison improved from 25 % for extinction to 18 % for backscatter, showing better performances of CALIPSO backscatter retrievals. Additionally, the aerosol typing comparison yielded a robust identification of dust and polluted dust. Moreover, the CALIPSO aerosol-type-dependent lidar ratio selection is assessed by means of EARLINET observations, so as to investigate the performance of the extinction retrievals. The aerosol types of dust, polluted dust, and clean continental showed noticeable discrepancy. Finally, the potential improvements of the lidar ratio assignment have been examined by adjusting it according to EARLINET-derived values.
- ItemLooking into CALIPSO climatological products: Evaluation and suggestions from EARLINET(Les Ulis : EDP Sciences, 2016) Papagiannopoulos, Nikolaos; Mona, Lucia; Alados-Alboledas, Lucas; Amiridis, Vassilis; Bortoli, Daniele; D’Amico, Giuseppe; Costa, Maria Joao; Pereira, Sergio; Spinelli, Nicola; Wandinger, Ulla Wandinger; Pappalardo, GelsominaCALIPSO (Cloud-Aerosol Lidar and Pathfinder Satellite Observations) Level 3 (CL3) data were compared against EARLINET (European Aerosol Research Lidar Network) monthly averages obtained by profiles during satellite overpasses. Data from EARLINET stations of Évora, Granada, Leipzig, Naples and Potenza, equipped with advanced multi-wavelength Raman lidars were used for this study. Owing to spatial and temporal differences, we reproduced the CL3 filtering rubric onto the CALIPSO Level 2 data. The CALIPSO monthly mean profiles following this approach are called CALIPSO Level 3*, CL3*. This offers the possibility to achieve direct comparable datasets. In respect to CL3 data, the agreement typically improved, in particular above the areas directly affected by the anthropogenic activities within the planetary boundary layer. However in most of the cases a subtle CALIPSO underestimation was observed with an average bias of 0.03 km-1. We investigated the backscatter coefficient applying the same screening criteria, where the mean relative difference in respect to the extinction comparison improved from 15.2% to 11.4%. Lastly, the typing capabilities of CALIPSO were assessed outlining the importance of the correct aerosol type (and associated lidar ratio value) assessment to the CALIPSO aerosol properties retrieval.
- ItemPollyNET - an emerging network of automated raman-polarizarion lidars for continuous aerosolprofiling(Les Ulis : EDP Sciences, 2018) Baars, Holger; Althausen, Dietrich; Engelmann, Ronny; Heese, Birgit; Ansmann, Albert; Wandinger, Ulla; Hofer, Julian; Skupin, Annett; Komppula, Mika; Giannakaki, Eleni; Filioglou, Maria; Bortoli, Daniele; Silva, Ana Maria; Pereira, Sergio; Stachlewska, Iwona S.; Kumala, Wojciech; Szczepanik, Dominika; Amiridis, Vassilis; Marinou, Eleni; Kottas, Michail; Mattis, Ina; Müller, Gerhard; Nicolae, D.; Makoto, A.; Vassilis, A.; Balis, D.; Behrendt, A.; Comeron, A.; Gibert, F.; Landulfo, E.; McCormick, M.P.; Senff, C.; Veselovskii, I.; Wandinger, U.PollyNET is a network of portable, automated, and continuously measuring Ramanpolarization lidars of type Polly operated by several institutes worldwide. The data from permanent and temporary measurements sites are automatically processed in terms of optical aerosol profiles and displayed in near-real time at polly.tropos.de. According to current schedules, the network will grow by 3-4 systems during the upcoming 2-3 years and will then comprise 11 permanent stations and 2 mobile platforms.