Browsing by Author "Peterson, Pearu"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemArray programming with NumPy(London [u.a.] : Nature Publ. Group, 2020) Harris, Charles R.; Millman, K. Jarrod; van der Walt, Stéfan J.; Gommers, Ralf; Virtanen, Pauli; Cournapeau, David; Wieser, Eric; Taylor, Julian; Berg, Sebastian; Smith, Nathaniel J.; Kern, Robert; Picus, Matti; Hoyer, Stephan; van Kerkwijk, Marten H.; Brett, Matthew; Haldane, Allan; del Río, Jaime Fernández; Wiebe, Mark; Peterson, Pearu; Gérard-Marchant, Pierre; Sheppard, Kevin; Reddy, Tyler; Weckesser, Warren; Abbasi, Hameer; Gohlke, Christoph; Oliphant, Travis E.Array programming provides a powerful, compact and expressive syntax for accessing, manipulating and operating on data in vectors, matrices and higher-dimensional arrays. NumPy is the primary array programming library for the Python language. It has an essential role in research analysis pipelines in fields as diverse as physics, chemistry, astronomy, geoscience, biology, psychology, materials science, engineering, finance and economics. For example, in astronomy, NumPy was an important part of the software stack used in the discovery of gravitational waves1 and in the first imaging of a black hole2. Here we review how a few fundamental array concepts lead to a simple and powerful programming paradigm for organizing, exploring and analysing scientific data. NumPy is the foundation upon which the scientific Python ecosystem is constructed. It is so pervasive that several projects, targeting audiences with specialized needs, have developed their own NumPy-like interfaces and array objects. Owing to its central position in the ecosystem, NumPy increasingly acts as an interoperability layer between such array computation libraries and, together with its application programming interface (API), provides a flexible framework to support the next decade of scientific and industrial analysis.
- ItemSciPy 1.0: fundamental algorithms for scientific computing in Python(London [u.a.] : Nature Publishing Group, 2020) Virtanen, Pauli; Gommers, Ralf; Oliphant, Travis E.; Haberland, Matt; Reddy, Tyler; Cournapeau, David; Burovski, Evgeni; Peterson, Pearu; Weckesser, Warren; Bright, Jonathan; van der Walt, Stéfan J.; Brett, Matthew; Wilson, Joshua; Millman, K. Jarrod; Mayorov, Nikolay; Nelson, Andrew R. J.; Jones, Eric; Kern, Robert; Larson, Eric; Carey, C J; Polat, İlhan; Feng, Yu; Moore, Eric W.; VanderPlas, Jake; Laxalde, Denis; Perktold, Josef; Cimrman, Robert; Henriksen, Ian; Quintero, E. A.; Harris, Charles R.; Archibald, Anne M.; Ribeiro, Antônio H.; Pedregosa, Fabian; van Mulbregt, Paul; Vijaykumar, Aditya; Bardelli, Alessandro Pietro; Rothberg, Alex; Hilboll, Andreas; Kloeckner, Andreas; Scopatz, Anthony; Lee, Antony; Rokem, Ariel; Woods, C. Nathan; Fulton, Chad; Masson, Charles; Häggström, Christian; Fitzgerald, Clark; Nicholson, David A.; Hagen, David R.; Pasechnik, Dmitrii V.; Olivetti, Emanuele; Martin, Eric; Wieser, Eric; Silva, Fabrice; Lenders, Felix; Wilhelm, Florian; Young, G.; Price, Gavin A.; Ingold, Gert-Ludwig; Allen, Gregory E.; Lee, Gregory R.; Audren, Hervé; Probst, Irvin; Dietrich, Jörg P.; Silterra, Jacob; Webber, James T; Slavič, Janko; Nothman, Joel; Buchner, Johannes; Kulick, Johannes; Schönberger, Johannes L.; de Miranda Cardoso, José Vinícius; Reimer, Joscha; Harrington, Joseph; Rodríguez, Juan Luis Cano; Nunez-Iglesias, Juan; Kuczynski, Justin; Tritz, Kevin; Thoma, Martin; Newville, Matthew; Kümmerer, Matthias; Bolingbroke, Maximilian; Tartre, Michael; Pak, Mikhail; Smith, Nathaniel J.; Nowaczyk, Nikolai; Shebanov, Nikolay; Pavlyk, Oleksandr; Brodtkorb, Per A.; Lee, Perry; McGibbon, Robert T.; Feldbauer, Roman; Lewis, Sam; Tygier, Sam; Sievert, Scott; Vigna, Sebastiano; Peterson, Stefan; More, Surhud; Pudlik, Tadeusz; Oshima, Takuya; Pingel, Thomas J.; Robitaille, Thomas P.; Spura, Thomas; Jones, Thouis R.; Cera, Tim; Leslie, Tim; Zito, Tiziano; Krauss, Tom; Upadhyay, Utkarsh; Halchenko, Yaroslav O.; Vázquez-Baeza, YoshikiSciPy is an open-source scientific computing library for the Python programming language. Since its initial release in 2001, SciPy has become a de facto standard for leveraging scientific algorithms in Python, with over 600 unique code contributors, thousands of dependent packages, over 100,000 dependent repositories and millions of downloads per year. In this work, we provide an overview of the capabilities and development practices of SciPy 1.0 and highlight some recent technical developments.