Browsing by Author "Riemann, H."
Now showing 1 - 12 of 12
Results Per Page
Sort Options
- ItemCharacterization of Silicon Crystals Grown from Melt in a Granulate Crucible(Warrendale, Pa : TMS, 2020) Dadzis, K.; Menzel, R.; Juda, U.; Irmscher, K.; Kranert, C.; Müller, M.; Ehrl, M.; Weingärtner, R.; Reimann, C.; Abrosimov, N.; Riemann, H.The growth of silicon crystals from a melt contained in a granulate crucible significantly differs from the classical growth techniques because of the granulate feedstock and the continuous growth process. We performed a systematic study of impurities and structural defects in several such crystals with diameters up to 60 mm. The possible origin of various defects is discussed and attributed to feedstock (concentration of transition metals), growth setup (carbon concentration), or growth process (dislocation density), showing the potential for further optimization. A distinct correlation between crystal defects and bulk carrier lifetime is observed. A bulk carrier lifetime with values up to 600 μs on passivated surfaces of dislocation-free parts of the crystal is currently achieved.
- ItemCoherent Rabi dynamics of a superradiant spin ensemble in a microwave cavity(College Park, Md. : APS, 2017) Rose, B.C.; Tyryshkin, A.M.; Riemann, H.; Abrosimov, N.V.; Becker, P.; Pohl, H.-J.; Thewalt, M.L.W.; Itoh, K.M.; Lyon, S.A.We achieve the strong-coupling regime between an ensemble of phosphorus donor spins in a highly enriched 28Si crystal and a 3D dielectric resonator. Spins are polarized beyond Boltzmann equilibrium using spin-selective optical excitation of the no-phonon bound exciton transition resulting in N=3.6×1013 unpaired spins in the ensemble. We observe a normal mode splitting of the spin-ensemble–cavity polariton resonances of 2g√N=580 kHz (where each spin is coupled with strength g) in a cavity with a quality factor of 75 000 (γ≪κ≈60 kHz, where γ and κ are the spin dephasing and cavity loss rates, respectively). The spin ensemble has a long dephasing time (T∗2=9 μs) providing a wide window for viewing the dynamics of the coupled spin-ensemble–cavity system. The free-induction decay shows up to a dozen collapses and revivals revealing a coherent exchange of excitations between the superradiant state of the spin ensemble and the cavity at the rate g√N. The ensemble is found to evolve as a single large pseudospin according to the Tavis-Cummings model due to minimal inhomogeneous broadening and uniform spin-cavity coupling. We demonstrate independent control of the total spin and the initial Z projection of the psuedospin using optical excitation and microwave manipulation, respectively. We vary the microwave excitation power to rotate the pseudospin on the Bloch sphere and observe a long delay in the onset of the superradiant emission as the pseudospin approaches full inversion. This delay is accompanied by an abrupt π-phase shift in the peusdospin microwave emission. The scaling of this delay with the initial angle and the sudden phase shift are explained by the Tavis-Cummings model.
- ItemCompeting Inversion-Based Lasing and Raman Lasing in Doped Silicon(College Park, Md. : APS, 2018) Pavlov, S. G.; Deßmann, N.; Redlich, B.; van der Meer, A. F. G.; Abrosimov, N. V.; Riemann, H.; Zhukavin, R. Kh.; Shastin, V. N.; Hübers, H.-W.We report on an optically pumped laser where photons are simultaneously generated by population inversion and by stimulated Raman scattering in the same active medium, namely crystalline silicon doped by bismuth (SiBi). The medium utilizes three electronic levels: ground state [|1
- ItemInfluence of slim rod material properties to the Siemens feed rod and the float zone process(Amsterdam [u.a.] : Elsevier, 2014) Richter, S.; Werner, M.; Schley, M.; Schaaff, F.; Riemann, H.; Rost, H.-J.; Zobel, F.; Kunert, R.; Dold, P.; Hagendorf, C.The identification and understanding of material properties influencing the float zone process is important to crystallize high purity silicon for high efficiency solar cells. Also the knowledge of minimal requirements to crystallize monocrystalline silicon with the float zone process is of interest from an economic point of view. In the present study, feed rods for the float zone process composed of a central slim rod and the deposited silicon from the Siemens process are investigated. Previous studies have shown that the slim rod has a significant impact on the purity and suitability for further crystallization processes. In particular, contaminations like substitutional carbon and the presence of precipitates as well as the formation of oxide layers play an important role and are investigated in detail. For this purpose different slim rod materials were used in deposition and float zone crystallization experiments. Samples were prepared by cross sectioning and core drilling of Siemens rods, which were recrystallized with the float zone process. Recrystallized drilled cores are analyzed with FT-IR spectrometry concerning the carbon and oxygen content. To estimate the grain growth behavior on the slim rod surface in dependence of the used slim rod material, EBSD mappings inside a SEM are performed on squared and circular slim rods. TEM analysis was used to investigate the presence of an oxide layer at the interface between slim rod and deposited polycrystalline silicon. Additionally the influence of a nitrogen-containing gas atmosphere during the slim rod pulling is investigated by IR microscopy and ToF-SIMS regarding Si3N4 precipitation.
- ItemA new generation of 99.999% enriched 28Si single crystals for the determination of Avogadro's constant(Sèvres : Bureau, 2017) Abrosimov, N.V.; Aref’ev, D.G.; Becker, P.; Bettin, H.; Bulanov, A.D.; Churbanov, M.F.; Filimonov, S.V.; Gavva, V.A.; Godisov, O.N.; Gusev, A.V.; Kotereva, T.V.; Nietzold, D.; Peters, M.; Potapov, A.M.; Pohl, H.-J.; Pramann, A.; Riemann, H.; Scheel, P.-T.; Stosch, R.; Wundrack, S.; Zakel, S.A metrological challenge is currently underway to replace the present definition of the kilogram. One prerequisite for this is that the Avogadro constant, NA, which defines the number of atoms in a mole, needs to be determined with a relative uncertainty of better than 2 × 10−8. The method applied in this case is based on the x-ray crystal density experiment using silicon crystals. The first attempt, in which silicon of natural isotopic composition was used, failed. The solution chosen subsequently was the usage of silicon highly enriched in 28Si from Russia. First, this paper reviews previous efforts from the very first beginnings to an international collaboration with the goal of producing a 28Si single crystal with a mass of 5 kg, an enrichment greater than 0.9999 and of sufficient chemical purity. Then the paper describes the activities of a follow-up project, conducted by PTB, to produce a new generation of highly enriched silicon in order to demonstrate the quasi-industrial and reliable production of more than 12 kg of the 28Si material with enrichments of five nines. The intention of this project is also to show the availability of 28Si single crystals as a guarantee for the future realisation of the redefined kilogram.
- ItemOptical pumping and readout of bismuth hyperfine states in silicon for atomic clock applications([London] : Macmillan Publishers Limited, part of Springer Nature, 2015) Saeedi, K.; Szech, M.; Dluhy, P.; Salvail, J.Z.; Morse, K.J.; Riemann, H.; Abrosimov, N.V.; Nötzel, N.; Litvinenko, K.L.; Murdin, B.N.; Thewalt, M.L.W.The push for a semiconductor-based quantum information technology has renewed interest in the spin states and optical transitions of shallow donors in silicon, including the donor bound exciton transitions in the near-infrared and the Rydberg, or hydrogenic, transitions in the mid-infrared. The deepest group V donor in silicon, bismuth, has a large zero-field ground state hyperfine splitting, comparable to that of rubidium, upon which the now-ubiquitous rubidium atomic clock time standard is based. Here we show that the ground state hyperfine populations of bismuth can be read out using the mid-infrared Rydberg transitions, analogous to the optical readout of the rubidium ground state populations upon which rubidium clock technology is based. We further use these transitions to demonstrate strong population pumping by resonant excitation of the bound exciton transitions, suggesting several possible approaches to a solid-state atomic clock using bismuth in silicon, or eventually in enriched 28Si.
- ItemSi:P as a laboratory analogue for hydrogen on high magnetic field white dwarf stars(London : Nature Publishing Group, 2013) Murdin, B.N.; Li, J.; Pang, M.L.Y.; Bowyer, E.T.; Litvinenko, K.L.; Clowes, S.K.; Engelkamp, H.; Pidgeon, C.R.; Galbraith, I.; Abrosimov, N.V.; Riemann, H.; Pavlov, S.G.; Hübers, H.-W.; Murdin, P.G.Laboratory spectroscopy of atomic hydrogen in a magnetic flux density of 10 5 T (1 gigagauss), the maximum observed on high-field magnetic white dwarfs, is impossible because practically available fields are about a thousand times less. In this regime, the cyclotron and binding energies become equal. Here we demonstrate Lyman series spectra for phosphorus impurities in silicon up to the equivalent field, which is scaled to 32.8 T by the effective mass and dielectric constant. The spectra reproduce the high-field theory for free hydrogen, with quadratic Zeeman splitting and strong mixing of spherical harmonics. They show the way for experiments on He and H 2 analogues, and for investigation of He 2, a bound molecule predicted under extreme field conditions.
- ItemThe spin-flip scattering effect in the spin transport in silicon doped with bismuth(Bristol : IOP Publ., 2017) Ezhevskii, A.A.; Detochenko, A.P.; Soukhorukov, A.V.; Guseinov, D.V.; Kudrin, A.V.; Abrosimov, N.V.; Riemann, H.Spin transport of conduction electrons in silicon samples doped with bismuth in the 1.1•1013 - 7.7•1015 cm-3 concentration range was studied by the Hall effect measurements. The dependence of the Hall voltage magnitude on the magnetic field is the sum of the normal and spin Hall effects. The electrons are partially polarized by an external magnetic field and are scattered by the bismuth spin-orbit potential. Spin-flip scattering results in the additional electromotive force which compensates the normal Hall effect in strong magnetic fields.
- ItemStructural and chemical investigations of adapted Siemens feed rods for an optimized float zone process(Amsterdam [u.a.] : Elsevier, 2013) Richter, S.; Werner, M.; Schley, M.; Schaaff, F.; Riemann, H.; Rost, H.-J.; Zobel, F.; Kunert, R.; Dold, P.; Hagendorf, C.The optimization of the float zone process for industrial application is a promising way to crystallize high purity silicon for high efficiency solar cells with reduced process costs. We investigated two differently produced Siemens rods which should be used as feed material for the float zone process. The aim is to identify and to improve material properties of the feed rods which have a high impact to the float zone process. We show here microstructural and chemical analysis comparing feed rods manufactured under standard conditions and under float zone adapted conditions. To resolve the growth behavior of the grains SEM/EBSD mappings are performed at different positions. TEM analyses are used to investigate the interface region between the mono- and the multicrystalline silicon within the Siemens feed rod. Additionally, drilled cores are cut out from the feed rods containing the region of the slim rod. Afterwards, the drilled cores are crystallized with the float zone process. Finally, carbon and oxygen measurements with FT-IR spectrometry on different positions of the crystallized drilled cores of the Siemens feed rods show the influence of the slim rod material to the float zone process.
- ItemTerahertz stimulated emission from silicon doped by hydrogenlike acceptors(College Park : American Institute of Physics Inc., 2014) Pavlov, S.G.; Deßmann, N.; Shastin, V.N.; Zhukavin, R.K.; Redlich, B.; van der Meer, A.F.G.; Mittendorff, M.; Winnerl, S.; Abrosimov, N.V.; Riemann, H.; Hübers, H.-W.Stimulated emission in the terahertz frequency range has been realized from boron acceptor centers in silicon. Population inversion is achieved at resonant optical excitation on the 1Λ8+ → 1Λ7- , 1Λ6-, 1Λ8- intracenter transitions with a midinfrared free-electron laser. Lasing occurs on two intracenter transitions around 1.75 THz. The upper laser levels are the 1Λ7- , 1Λ6- , and 1Λ8- states, and the lower laser level for both emission lines is the 2Λ8+ state. In contrast to n-type intracenter silicon lasers, boron-doped silicon lasers do not involve the excited states with the longest lifetimes. Instead, the absorption cross section for the pump radiation is the dominating factor. The four-level lasing scheme implies that the deepest even-parity boron state is the 2Λ8+ state and not the 1Λ7+ split-off ground state, as indicated by other experiments. This is confirmed by infrared absorption spectroscopy of Si:B.
- ItemTerahertz transient stimulated emission from doped silicon(Melville, NY : AIP Publishing, 2020) Pavlov, S.G.; Deßmann, N.; Pohl, A.; Zhukavin, R.K.; Klaassen, T.O.; Abrosimov, N.V.; Riemann, H.; Redlich, B.; Van Der Meer, A.F.G.; Ortega, J.-M.; Prazeres, R.; Orlova, E.E.; Muraviev, A.V.; Shastin, V.N.; Hübers, H.-W.Transient-type stimulated emission in the terahertz (THz) frequency range has been achieved from phosphorus doped silicon crystals under optical excitation by a few-picosecond-long pulses generated by the infrared free electron lasers FELIX and CLIO. The analysis of the lasing threshold and emission spectra indicates that the stimulated emission occurs due to combined population inversion based lasing and stimulated Raman scattering. Giant gain has been obtained in the optically pumped silicon due to large THz cross sections of intracenter impurity transitions and resonant intracenter electronic scattering. The transient-type emission is formed under conditions when the pump pulse intervals exceed significantly the photon lifetime in the laser resonator. © 2020 Author(s).
- ItemViolation of a Leggett-Garg inequality with ideal non-invasive measurements(London : Nature Publishing Group, 2012) Knee, G.C.; Simmons, S.; Gauger, E.M.; Morton, J.J.L.; Riemann, H.; Abrosimov, N.V.; Becker, P.; Pohl, H.-J.; Itoh, K.M.; Thewalt, M.L.W.; Briggs, G.A.D.; Benjamin, S.C.The quantum superposition principle states that an entity can exist in two different states simultaneously, counter to our 'classical' intuition. Is it possible to understand a given system's behaviour without such a concept? A test designed by Leggett and Garg can rule out this possibility. The test, originally intended for macroscopic objects, has been implemented in various systems. However to date no experiment has employed the 'ideal negative result' measurements that are required for the most robust test. Here we introduce a general protocol for these special measurements using an ancillary system, which acts as a local measuring device but which need not be perfectly prepared. We report an experimental realization using spin-bearing phosphorus impurities in silicon. The results demonstrate the necessity of a non-classical picture for this class of microscopic system. Our procedure can be applied to systems of any size, whether individually controlled or in a spatial ensemble.