Browsing by Author "Stemper, Benjamin"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemDeep calibration of rough stochastic volatility models(Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2018) Bayer, Christian; Stemper, BenjaminSparked by Alòs, León und Vives (2007); Fukasawa (2011, 2017); Gatheral, Jaisson und Rosenbaum (2018), so-called rough stochastic volatility models such as the rough Bergomi model by Bayer, Friz und Gatheral (2016) constitute the latest evolution in option price modeling. Unlike standard bivariate diffusion models such as Heston (1993), these non-Markovian models with fractional volatility drivers allow to parsimoniously recover key stylized facts of market implied volatility surfaces such as the exploding power-law behaviour of the at-the-money volatility skew as time to maturity goes to zero. Standard model calibration routines rely on the repetitive evaluation of the map from model parameters to Black-Scholes implied volatility, rendering calibration of many (rough) stochastic volatility models prohibitively expensive since there the map can often only be approximated by costly Monte Carlo (MC) simulations (Bennedsen, Lunde & Pakkanen, 2017; McCrickerd & Pakkanen, 2018; Bayer et al., 2016; Horvath, Jacquier & Muguruza, 2017). As a remedy, we propose to combine a standard Levenberg-Marquardt calibration routine with neural network regression, replacing expensive MC simulations with cheap forward runs of a neural network trained to approximate the implied volatility map. Numerical experiments confirm the high accuracy and speed of our approach.
- ItemA regularity structure for rough volatility(Oxford [u.a.] : Wiley-Blackwell, 2019) Bayer, Christian; Friz, Peter K.; Gassiat, Paul; Martin, Jorg; Stemper, BenjaminA new paradigm has emerged recently in financial modeling: rough (stochastic) volatility. First observed by Gatheral et al. in high-frequency data, subsequently derived within market microstructure models, rough volatility captures parsimoniously key-stylized facts of the entire implied volatility surface, including extreme skews (as observed earlier by Alòs et al.) that were thought to be outside the scope of stochastic volatility models. On the mathematical side, Markovianity and, partially, semimartingality are lost. In this paper, we show that Hairer's regularity structures, a major extension of rough path theory, which caused a revolution in the field of stochastic partial differential equations, also provide a new and powerful tool to analyze rough volatility models.