Browsing by Author "Stober, G."
Now showing 1 - 20 of 25
Results Per Page
Sort Options
- ItemCan VHF radars at polar latitudes measure mean vertical winds in the presence of PMSE?(Göttingen : Copernicus GmbH, 2019) Gudadze, N.; Stober, G.; Chau, J.L.Mean vertical velocity measurements obtained from radars at polar latitudes using polar mesosphere summer echoes (PMSEs) as an inert tracer have been considered to be non-representative of the mean vertical winds over the last couple of decades. We used PMSEs observed with the Middle Atmosphere Alomar Radar System (MAARSY) over Andøya, Norway (69.30°N, 16.04°E), during summers of 2016 and 2017 to derive mean vertical winds in the upper mesosphere. The 3-D vector wind components (zonal, meridional and vertical) are based on a Doppler beam swinging experiment using five beam directions (one vertical and four oblique). The 3-D wind components are computed using a recently developed wind retrieval technique. The method includes full non-linear error propagation, spatial and temporal regularisation, and beam pointing corrections and angular pointing uncertainties. Measurement uncertainties are used as weights to obtain seasonal weighted averages and characterise seasonal mean vertical velocities. Weighted average values of vertical velocities reveal a weak upward behaviour at altitudes ∼ 84-87 km after eliminating the influence of the speed of falling ice. At the same time, a sharp decrease (increase) in the mean vertical velocities at the lower (upper) edges of the summer mean altitude profile, which are attributed to the sampling issues of the PMSE due to disappearance of the target corresponding to the certain regions of motions and temperatures, prevails. Thus the mean vertical velocities can be biased downwards at the lower edge, and the mean vertical velocities can be biased upwards at the upper edge, while at the main central region the obtained mean vertical velocities are consistent with expected upward values of mean vertical winds after considering ice particle sedimentation. © 2019 Author(s). This work is distributed under the Creative Commons Attribution 4.0 License.
- ItemClimatologies and long-term changes in mesospheric wind and wave measurements based on radar observations at high and mid latitudes(Göttingen : Copernicus GmbH, 2019) Wilhelm, S.; Stober, G.; Brown, P.We report on long-term observations of atmospheric parameters in the mesosphere and lower thermosphere (MLT) made over the last 2 decades. Within this study, we show, based on meteor wind measurement, the long-term variability of winds, tides, and kinetic energy of planetary and gravity waves. These measurements were done between the years 2002 and 2018 for the high-latitude location of Andenes (69.3°N, 16°E) and the mid-latitude locations of Juliusruh (54.6°N, 13.4°E) and Tavistock (43.3°N, 80.8°W). While the climatologies for each location show a similar pattern, the locations differ strongly with respect to the altitude and season of several parameters. Our results show annual wind tendencies for Andenes which are toward the south and to the west, with changes of up to 3°m s-1 per decade, while the mid-latitude locations show smaller opposite tendencies to negligible changes. The diurnal tides show nearly no significant long-term changes, while changes for the semidiurnal tides differ regarding altitude. Andenes shows only during winter a tidal weakening above 90°km, while for the Canadian Meteor Orbit Radar (CMOR) an enhancement of the semidiurnal tides during the winter and a weakening during fall occur. Furthermore, the kinetic energy for planetary waves showed strong peak values during winters which also featured the occurrence of sudden stratospheric warming. The influence of the 11-year solar cycle on the winds and tides is presented. The amplitudes of the mean winds exhibit a significant amplitude response for the zonal component below 82°km during summer and from November to December between 84 and 95°km at Andenes and CMOR. The semidiurnal tides (SDTs) show a clear 11-year response at all locations, from October to November. © 2019 by ASME.
- ItemConnection between the length of day and wind measurements in the mesosphere and lower thermosphere at mid- and high latitudes(Göttingen : Copernicus GmbH, 2019) Wilhelm, S.; Stober, G.; Matthias, V.; Jacobi, C.; J, Murphy, D.This work presents a connection between the density variation within the mesosphere and lower thermosphere (MLT) and changes in the intensity of solar radiation. On a seasonal timescale, these changes take place due to the revolution of the Earth around the Sun. While the Earth, during the northern-hemispheric (NH) winter, is closer to the Sun, the upper mesosphere expands due to an increased radiation intensity, which results in changes in density at these heights. These density variations, i.e., a vertical redistribution of atmospheric mass, have an effect on the rotation rate of Earth's upper atmosphere owing to angular momentum conservation. In order to test this effect, we applied a theoretical model, which shows a decrease in the atmospheric rotation speed of about ĝ1/44 m sĝ'1 at a latitude of 45ĝ in the case of a density change of 1 % between 70 and 100 km. To support this statement, we compare the wind variability obtained from meteor radar (MR) and Microwave Limb Sounder (MLS) satellite observations with fluctuations in the length of a day (LOD). Changes in the LOD on timescales of a year and less are primarily driven by tropospheric large-scale geophysical processes and their impact on the Earth's rotation. A global increase in lower-atmospheric eastward-directed winds leads, due to friction with the Earth's surface, to an acceleration of the Earth's rotation by up to a few milliseconds per rotation. The LOD shows an increase during northern winter and decreases during summer, which corresponds to changes in the MLT density due to the Earth-Sun movement. Within the MLT the mean zonal wind shows similar fluctuations to the LOD on annual scales as well as longer time series, which are connected to the seasonal wind regime as well as to density changes excited by variations in the solar radiation. A direct correlation between the local measured winds and the LOD on shorter timescales cannot clearly be identified, due to stronger influences of other natural oscillations on the wind. Further, we show that, even after removing the seasonal and 11-year solar cycle variations, the mean zonal wind and the LOD are connected by analyzing long-term tendencies for the years 2005-2016. © Author(s) 2019.
- ItemDetermination of meteor-head echo trajectories using the interferometric capabilities of MAARSY(München : European Geopyhsical Union, 2013) Schult, C.; Stober, G.; Chau, J.L.; Latteck, R.During the flight of a meteoroid through the neutral atmosphere, the high kinetic energy is sufficient to ionize the meteoric constituents. Radar echoes coming from plasma irregularities surrounding the meteoroids are called meteor-head echoes, and can be detected by HPLA radar systems. Measurements of these echoes were conducted with MAARSY (Middle Atmosphere Alomar Radar System) in December 2010. The interferometric capabilities of the radar system permit the determination of the meteor trajectories within the radar beam with high accuracy. The received data are used to gain information about entry velocities, source radiants, observation heights and other meteoroid parameters. Our preliminary results indicate that the majority of meteors have masses between 10−10 and 10−3 kg and the mean masses of the sporadic meteors and Gemenids meteors are ∼10−8 kg.
- ItemDevelopment of the mesospheric Na layer at 69 N during the Geminids meteor shower 2010(München : European Geopyhsical Union, 2013) Dunker, T.; Hoppe, U.-P.; Stober, G.; Rapp, M.The ECOMA sounding rocket campaign in 2010 was performed to investigate the charge state and number density of meteoric smoke particles during the Geminids meteor shower in December 2010. The ALOMAR Na lidar contributed to the campaign with measurements of sodium number density, temperature and line-of-sight wind between 80 and 110 km altitude over Andøya in northern Norway. This paper investigates a possible connection between the Geminids meteor shower and the mesospheric sodium layer. We compare with data from a meteor radar and from a rocket-borne in situ particle instrument on three days. Our main result is that the sodium column density is smaller during the Geminids meteor shower than the winter average at the same latitude. Moreover, during two of the three years considered, the sodium column density decreased steadily during these three weeks of the year. Both the observed decrease of Na column density by 30% and of meteoric smoke particle column density correlate well with a corresponding decrease of sporadic meteor echoes. We found no correlation between Geminids meteor flux rates and sodium column density, nor between sporadic meteors and Na column density (R = 0.25). In general, we found the Na column density to be at very low values for winter, between 1.8 and 2.6 × 1013 m−2. We detected two meteor trails containing sodium, on 13 December 2010 at 87.1 km and on 19 December 2010 at 84 km. From these meteor trails, we estimate a global meteoric Na flux of 121 kg d−1 and a global total meteoric influx of 20.2 t d−1.
- ItemDistortion of meteor count rates due to cosmic radio noise and atmospheric particularities(Göttingen : Copernicus, 2010) Stober, G.; Jacobi, C.; Keuer, D.The determination of the meteoroid flux is still a scientifically challenging task. This paper focusses on the impact of extraterrestrial noise sources as well as atmospheric phenomena on the observation of specular meteor echoes. The effect of cosmic radio noise on the meteor detection process is estimated by computing the relative difference between radio loud and radio quiet areas and comparing the monthly averaged meteor flux for fixed signal-to-noise ratios or fixed electron line density measurements. Related to the cosmic radio noise is the influence of D-layer absorption or interference with sporadic E-layers, which can lead to apparent day-to-day variation of the meteor flux of 15-20%. © 2010 Author(s).
- ItemThe Geminid meteor shower during the ECOMA sounding rocket campaign: Specular and head echo radar observations(Göttingen : Copernicus, 2013) Stober, G.; Schult, C.; Baumann, C.; Latteck, R.; Rapp, M.The ECOMA (Existence of Charge state Of meteoric smoke particles in the Middle Atmosphere) sounding rocket campaign was conducted during the Geminid meteor shower in December 2010 in order to explore whether there is a change of the properties of meteoric smoke particles due to the stream. In parallel to the rocket flights, three radars monitored the Geminid activity located at the launch site in Northern Norway and in Northern Germany to gain information about the meteor flux into the atmosphere. The results presented here are based on specular meteor radar observations measuring the radiant position, the velocity and the meteor flux into the atmosphere during the Geminids. Further, the MAARSY (Middle Atmosphere Alomar Radar System) radar was operated to conduct meteor head echo experiments. The interferometric capabilities of MAARSY permit measuring the meteor trajectories within the radar beam and to determine the source radiant and geocentric meteor velocity, as well as to compute the meteor orbit.
- ItemGeometric considerations of polar mesospheric summer echoes in tilted beams using coherent radar imaging(München : European Geopyhsical Union, 2014) Sommer, S.; Stober, G.; Chau, J.L.; Latteck, R.We present observations of polar mesospheric summer echoes (PMSE) using the Middle Atmosphere Alomar Radar System in Northern Norway (69.30° N, 16.04° E). The radar is able to resolve PMSE at high spatial and temporal resolution and to perform pulse-to-pulse beam steering. In this experiment, 81 oblique beam directions were used with off-zenith angles up to 25°. For each beam pointing direction and range gate, coherent radar imaging was applied to determine the mean backscatter location. The location of the mean scatterer in the beam volume was calculated by the deviation from the nominal off-zenith angle of the brightest pixel. It shows that in tilted beams with an off-zenith angle greater than 5°, structures appear at the altitudinal edges of the PMSE layer. Our results indicate that the mean influence of the location of the maximum depends on the tilt of the beam and on the observed area of the PMSE layer. At the upper/lower edge of the PMSE layer, the mean backscatter has a greater/smaller off-zenith angle than the nominal off-zenith angle. This effect intensifies with greater off-zenith beam pointing direction, so the beam filling factor plays an important role in the observation of PMSE layers for oblique beams.
- ItemGlobal observations of 2 day wave coupling to the diurnal tide in a high‐altitude forecast‐assimilation system(Hoboken, NJ : Wiley, 2017-4-18) Lieberman, R.S.; Riggin, D.M.; Nguyen, V.; Palo, S.E.; Siskind, D.E.; Mitchell, N.J.; Stober, G.; Wilhelm, S.; Livesey, N.J.We examine wave components in a high-altitude forecast-assimilation system that arise from nonlinear interaction between the diurnal tide and the westward traveling quasi 2 day wave. The process yields a westward traveling “sum” wave with zonal wave number 4 and a period of 16 h, and an eastward traveling “difference” wave with zonal wave number 2 and a period of 2 days. While the eastward 2 day wave has been reported in satellite temperatures, the westward 16 h wave lies outside the Nyquist limits of resolution of twice daily local time satellite sampling. Hourly output from a high-altitude forecast-assimilation model is used to diagnose the nonlinear quadriad. A steady state primitive equation model forced by tide-2 day wave advection is used to intepret the nonlinear wave products. The westward 16 h wave maximizes in the midlatitude winter mesosphere and behaves like an inertia-gravity wave. The nonlinearly generated component of the eastward 2 day wave maximizes at high latitudes in the lower thermosphere, and only weakly penetrates to low latitudes. The 16 h and the eastward 2 day waves are of comparable amplitude and alias to the same apparent frequency when viewed from a satellite perspective.
- ItemHorizontally resolved structures of radar backscatter from polar mesospheric layers(Göttingen : Copernicus, 2012) Latteck, R.; Singer, W.; Rapp, M.; Renkwitz, T.; Stober, G.The Leibniz-Institute of Atmospheric Physics in Kühlungsborn, Germany (IAP) installed a new powerful VHF radar on the North-Norwegian island Andøya (69.30 N, 16.04 E) from 2009 to 2011. The new Middle Atmosphere Alomar Radar System (MAARSY) replaces the existing ALWIN radar which has been in continuous operation on Andøya for more than 10 yr. MAARSY is a monostatic radar operated at 53.5 MHz with an active phased array antenna consisting of 433 Yagi antennas each connected to its own transceiver with independent control of frequency, phase and power of the transmitted signal. This arrangement provides a very high flexibility of beam forming and beam steering. It allows classical beam swinging operation as well as experiments with simultaneous multiple beams and the use of modern interferometric applications for improved studies of the Arctic atmosphere from the troposphere up to the lower thermosphere with high spatial-temporal resolution. The installation of the antenna was completed in August 2009. An initial expansion stage of 196 transceiver modules was installed in spring 2010, upgraded to 343 transceiver modules in December 2010 and the installation of the radar was completed in spring 2011. Beside standard observations of tropospheric winds and Polar Mesosphere Summer Echoes, multi-beam experiments using up to 91 beams quasi-simultaneously in the mesosphere have been carried out using the different expansion stages of the system during campaigns in 2010 and 2011. These results provided a first insight into the horizontal variability of Polar Mesosphere Summer and Winter Echoes in an area of about 80 km by 80 km with time resolutions between 3 and 9 min.
- ItemThe impact of planetary waves on the latitudinal displacement of sudden stratospheric warmings(Göttingen : Copernicus, 2013) Matthias, V.; Hoffmann, P.; Manson, A.; Meek, C.; Stober, G.; Brown, P.; Rapp, M.The Northern Hemispheric winter is disturbed by large scale variability mainly caused by Planetary Waves (PWs), which interact with the mean flow and thus result in Sudden Stratospheric Warmings (SSWs). The effects of a SSW on the middle atmosphere are an increase of stratospheric and a simultaneous decrease of mesospheric temperature as well as a wind reversal to westward wind from the mesosphere to the stratosphere. In most cases these disturbances are strongest at polar latitudes, get weaker toward the south and vanish at mid-latitudes around 50° to 60° N as for example during the winter 2005/06. However, other events like in 2009, 2010 and 2012 show a similar or even stronger westward wind at mid-than at polar latitudes either in the mesosphere or in the stratosphere during the SSW. This study uses local meteor and MF-radar measurements, global satellite observations from the Microwave Limb Sounder (MLS) and assimilated model data from MERRA (Modern-ERA Retrospective analysis for research and Applications). We compare differences in the latitudinal structure of the zonal wind, temperature and PW activity between a "normal" event, where the event in 2006 was chosen representatively, and the latitudinal displaced events in 2009, 2010 and 2012. A continuous westward wind band between the pole and 20° N is observed during the displaced events. Furthermore, distinctive temperature differences at mid-latitudes occur before the displaced warmings compared to 2006 as well as a southward extended stratospheric warming afterwards. These differences between the normal SSW in 2006 and the displaced events in 2009, 2010 and 2012 are linked to an increased PWactivity between 30° N and 50° N and the changed stationary wave flux in the stratosphere around the displaced events compared to 2006.
- ItemIn situ observations of meteor smoke particles (MSP) during the Geminids 2010: Constraints on MSP size, work function and composition(München : European Geopyhsical Union, 2012) Rapp, M.; Plane, J.M.C.; Strelnikov, B.; Stober, G.; Ernst, S.; Hedin, J.; Friedrich, M.; Hoppe, U.-P.The ECOMA sounding rocket campaign in 2010 was performed to investigate the charge state and number density of meteoric smoke particles during the Geminids meteor shower in December 2010. The ALOMAR Na lidar contributed to the campaign with measurements of sodium number density, temperature and line-of-sight wind between 80 and 110 km altitude over Andøya in northern Norway. This paper investigates a possible connection between the Geminids meteor shower and the mesospheric sodium layer. We compare with data from a meteor radar and from a rocket-borne in situ particle instrument on three days. Our main result is that the sodium column density is smaller during the Geminids meteor shower than the winter average at the same latitude. Moreover, during two of the three years considered, the sodium column density decreased steadily during these three weeks of the year. Both the observed decrease of Na column density by 30% and of meteoric smoke particle column density correlate well with a corresponding decrease of sporadic meteor echoes. We found no correlation between Geminids meteor flux rates and sodium column density, nor between sporadic meteors and Na column density (R = 0.25). In general, we found the Na column density to be at very low values for winter, between 1.8 and 2.6 × 1013 m−2. We detected two meteor trails containing sodium, on 13 December 2010 at 87.1 km and on 19 December 2010 at 84 km. From these meteor trails, we estimate a global meteoric Na flux of 121 kg d−1 and a global total meteoric influx of 20.2 t d−1.
- ItemInvestigation of horizontal structures at mesospheric altitudes using coherent radar imaging(Göttingen : Copernicus, 2013) Sommer, S.; Stober, G.; Schult, C.; Zecha, M.; Latteck, R.The Middle Atmosphere Alomar Radar System (MAARSY) in Northern Norway (69.30°N, 16.04°E) was used to perform interferometric observations of Polar Mesosperic Summer Echoes (PMSE) in June 2012. Coherent Radar Imaging (CRI) using Capon's method was applied allowing a high spatial resolution. The algorithm was validated by simulation and trajectories of meteor head echoes. Both data sets show a good correspondence with the algorithm. Using this algorithm, the aspect sensitivity of PMSE was analysed in a case study, making use of the capability of CRI to resolve the pattern within the beam volume. No correction of the beam pattern was made yet. It was found in this case study, that no large variations in the scattering width and the scattering center occured apart from a very short period of time at the upper edge of the PMSE.
- ItemMAARSY-the new MST radar on Andøya: First results of spaced antenna and Doppler measurements of atmospheric winds in the troposphere and mesosphere using a partial array(Göttingen : Copernicus, 2012) Stober, G.; Latteck, R.; Rapp, M.; Singer, W.; Zecha, M.MST radars have been used to study the troposphere, stratosphere and mesosphere over decades. These radars have proven to be a valuable tool to investigate atmospheric dynamics. MAARSY, the new MST radar at the island of Andøya uses a phased array antenna and is able to perform spaced antenna and Doppler measurements at the same time with high temporal and spatial resolution. Here we present first wind observations using the initial expansion stage during summer 2010. The tropospheric spaced antenna and Doppler beam swinging experiments are compared to radiosonde measurements, which were launched at the nearby Andøya Rocket Range (ARR). The mesospheric wind observations are evaluated versus common volume meteor radar wind measurements. The beam steering capabilities of MAARSY are demonstrated by performing systematic scans of polar mesospheric summer echoes (PMSE) using 25 and 91 beam directions. These wind observations permit to evaluate the new radar against independent measurements from radiosondes and meteor radar measurements to demonstrate its capabilities to provide reliable wind data from the troposphere up to the mesosphere.
- ItemMesospheric anomalous diffusion during noctilucent cloud scenarios(Göttingen : Copernicus GmbH, 2019) Laskar, F.I.; Stober, G.; Fiedler, J.; Oppenheim, M.M.; Chau, J.L.; Pallamraju, D.; Pedatella, N.M.; Tsutsumi, M.; Renkwitz, T.The Andenes specular meteor radar shows meteor trail diffusion rates increasing on average by about 10% at times and locations where a lidar observes noctilucent clouds (NLCs). This high-latitude effect has been attributed to the presence of charged NLC after exploring possible contributions from thermal tides. To make this claim, the current study evaluates data from three stations at high, middle, and low latitudes for the years 2012 to 2016 to show that NLC influence on the meteor trail diffusion is independent of thermal tides. The observations also show that the meteor trail diffusion enhancement during NLC cover exists only at high latitudes and near the peaks of NLC layers. This paper discusses a number of possible explanations for changes in the regions with NLCs and leans towards the hypothesis that the relative abundance of background electron density plays the leading role. A more accurate model of the meteor trail diffusion around NLC particles would help researchers determine mesospheric temperature and neutral density profiles from meteor radars at high latitudes. © 2019 Author(s).
- ItemMeteor radar observations of mesopause region long-period temperature oscillations(Göttingen : Copernicus, 2016) Jacobi, Ch.; Samtleben, N.; Stober, G.Meteor radar observations of mesosphere/lower thermosphere (MLT) daily temperatures have been performed at Collm, Germany since August 2004. The data have been analyzed with respect to long-period oscillations at time scales of 2–30 days. The results reveal that oscillations with periods of up to 6 days are more frequently observed during summer, while those with longer periods have larger amplitudes during winter. The oscillations may be considered as the signature of planetary waves. The results are compared with analyses from radar wind measurements. Moreover, the temperature oscillations show considerable year-to-year variability. In particular, amplitudes of the quasi 5-day oscillation have increased during the last decade, and the quasi 10-day oscillations are larger if the equatorial stratospheric winds are eastward.
- ItemNew experiments to validate the radiation pattern of the Middle Atmosphere Alomar Radar System (MAARSY)(Göttingen : Copernicus, 2013) Renkwitz, T.; Stober, G.; Latteck, R.; Singer, W.; Rapp, M.The Middle Atmosphere Alomar Radar System (MAARSY) is a monostatic radar with an active phased array antenna designed for studies of phenomena in the mesosphere and lower thermosphere. Its design in particular the flexible beam forming and steering capability makes it to a powerful instrument to perform observations with high angular and temporal resolution. The knowledge of the actual radiation pattern is crucial to configure and analyze experiments carried out with the radar. The simulated radiation pattern is evaluated by the observation of cosmic radio emissions which are compared to a Global Sky temperature Maps model consisting of the most recent, thorough and accurate radio astronomy surveys. Additionally to these passive receive-only experiments active two-way experiments are presented, which corroborate the findings of the passive experiments.
- ItemOn the evaluation of the phase relation between temperature and wind tides based on ground-based measurements and reanalysis data in the middle atmosphere(Göttingen : Copernicus GmbH, 2019) Baumgarten, K.; Stober, G.The variability in the middle atmosphere is driven by a variety of waves covering different spatial and temporal scales. We diagnose the variability in the thermal tides due to changes in the background wind by an adaptive spectral filter, which takes the intermittency of tides into account. We apply this diagnostic to temperature observations from daylight-capable lidar at midlatitudes (54° N, 12° E) as well as to reanalysis data of horizontal winds from Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2). These reanalysis data provide additional wind information in the altitude range between 30 and 70 km at the location of the lidar as well as on a global scale. Using the global data gives information on the tidal modes seen at one location. A comparison of the temperature and wind information affirms whether there is a fixed phase relation of the tidal waves in the temperature and the wind data. We found that in general the local tidal signatures are dominated by migrating tidal modes, and the signature is weaker in temperatures than in winds. While the meridional wind tide leads the zonal wind tide by 90°, the phase relation between the temperature and the wind tide is more complex. At certain altitudes the temperature tide follows the zonal wind tide. This knowledge helps in improving the interpretation of the seasonal variation in tides from different observables, especially when only data from single locations are used. The findings provide additional information about the phase stability of tidal waves, and the results clearly show the importance of a measurement acquisition on a routine basis with high temporal and spatial resolution. © 2019 Author(s).
- ItemRetrieving horizontally resolved wind fields using multi-static meteor radar observations(Göttingen : Copernicus GmbH, 2018) Stober, G.; Chau, J.L.; Vierinen, J.; Jacobi, C.; Wilhelm, S.Recently, the MMARIA (Multi-static, Multi-frequency Agile Radar for Investigations of the Atmosphere) concept of a multi-static VHF meteor radar network to derive horizontally resolved wind fields in the mesosphere-lower thermosphere was introduced. Here we present preliminary results of the MMARIA network above Eastern Germany using two transmitters located at Juliusruh and Collm, and five receiving links: two monostatic and three multi-static. The observations are complemented during a one-week campaign, with a couple of addition continuous-wave coded transmitters, making a total of seven multi-static links. In order to access the kinematic properties of non-homogenous wind fields, we developed a wind retrieval algorithm that applies regularization to determine the non-linear wind field in the altitude range of 82-98 km. The potential of such observations and the new retrieval to investigate gravity waves with horizontal scales between 50-200 km is presented and discussed. In particular, it is demonstrated that horizonal wavelength spectra of gravity waves can be obtained from the new data set. © Author(s) 2018.
- ItemSemidiurnal solar tide differences between fall and spring transition times in the Northern Hemisphere(Göttingen : Copernicus GmbH, 2018) Conte, J.F.; Chau, J.L.; Laskar, F.I.; Stober, G.; Schmidt, H.; Brown, P.We present a study of the semidiurnal solar tide (S2) during the fall and spring transition times in the Northern Hemisphere. The tides have been obtained from wind measurements provided by three meteor radars located at Andenes (69° N, 16° E), Juliusruh (54° N, 13° E) and Tavistock (42° N, 81° W). During the fall, S2 is characterized by a sudden and pronounced decrease occurring every year and at all height levels. The spring transition also shows a decrease in S2, but not sudden and that ascends from lower to higher altitudes during an interval of ∼ 15 to 40 days. To assess contributions of different semidiurnal tidal components, we have examined a 20-year free-run simulation by the Hamburg Model of the Neutral and Ionized Atmosphere (HAMMONIA). We found that the differences exhibited by the S2 tide between equinox times are mainly due to distinct behaviors of the migrating semidiurnal and the non-migrating westward-propagating wave number 1 tidal components (SW2 and SW1, respectively). Specifically, during the fall both SW2 and SW1 decrease, while during the springtime SW2 decreases but SW1 remains approximately constant or decreases only slightly. The decrease shown by SW1 during the fall occurs later than that of SW2 and S2, which indicates that the behavior of S2 is mainly driven by the migrating component. Nonetheless, the influence of SW1 is necessary to explain the behavior of S2 during the spring. In addition, a strong shift in the phase of S2 (of SW2 in the simulations) is also observed during the fall. Our meteor radar wind measurements show more gravity wave activity in the fall than during the spring, which might be indicating that the fall decrease is partly due to interactions between SW2 and gravity waves. © 2018 Author(s).