Browsing by Author "Tejero-del-Caz, A."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemThe LisbOn KInetics Boltzmann solver(Bristol : IOP Publ., 2019) Tejero-del-Caz, A.; Guerra, V.; Gonçalves, D.; da Silva, M. Lino; Marques, L.; Pinhão, N.; Pintassilgo, C.D.; Alves, L.L.The LisbOn KInetics Boltzmann (LoKI-B) is an open-source simulation tool (https://github.com/IST-Lisbon/LoKI) that solves a time and space independent form of the two-term electron Boltzmann equation, for non-magnetised non-equilibrium low-temperature plasmas excited by DC/HF electric fields from different gases or gas mixtures. LoKI-B was developed as a response to the need of having an electron Boltzmann solver easily addressing the simulation of the electron kinetics in any complex gas mixture (of atomic/molecular species), describing first and second-kind electron collisions with any target state (electronic, vibrational and rotational), characterized by any user-prescribed population. LoKI-B includes electron-electron collisions, it handles rotational collisions adopting either a discrete formulation or a more convenient continuous approximation, and it accounts for variations in the number of electrons due to non-conservative events by assuming growth models for the electron density. On input, LoKI-B defines the operating work conditions, the distribution of populations for the electronic, vibrational and rotational levels of the atomic/molecular gases considered, and the relevant sets of electron-scattering cross sections obtained from the open-access website LXCat (http://lxcat.net/). On output, it yields the isotropic and the anisotropic parts of the electron distribution function (the former usually termed the electron energy distribution function), the electron swarm parameters, and the electron power absorbed from the electric field and transferred to the different collisional channels. LoKI-B is developed with flexible and upgradable object-oriented programming under MATLAB®, to benefit from its matrix-based architecture, adopting an ontology that privileges the separation between tool and data. This topical review presents LoKI-B and gives examples of results obtained for different model and real gases, verifying the tool against analytical solutions, benchmarking it against numerical calculations, and validating the output by comparison with available measurements of swarm parameters.
- ItemOn the quasi-stationary approach to solve the electron Boltzmann equation in pulsed plasmas(Bristol : IOP Publ., 2021) Tejero-del-Caz, A.; Guerra, V.; Pinhão, N.; Pintassilgo, C.D.; Alves, L.L.This work analyzes the temporal evolution of the electron kinetics in dry-air plasmas (80% N2: 20% O2), excited by electric-field pulses with typical rise-times of 10-9 and 10-6 s, applied to a stationary neutral gaseous background at pressures of 105, 133 Pa and temperature of 300 K. The study is based on the solution of the electron Boltzmann equation (EBE), adopting either (i) a time-dependent formulation that considers an intrinsic time evolution for the electron energy distribution function (EEDF), assuming the classical two-term expansion and a space-independent exponential temporal growth of the electron density; or (ii) a quasi-stationary approach, where the time-independent form of the EBE is solved for different values of the reduced electric-field over the duration of the pulse. The EBE was solved using the LisbOn KInetics Boltzmann solver (LoKI-B), whose original capabilities were extended to accept time-dependent non-oscillatory electric fields as input data. The role of electron-electron collisions, under specific conditions, is also reported and discussed. The simulations show that the quasi-stationary approach gives solutions similar to the time-dependent formulation for rise-times longer than the characteristic evolution time of the EEDF, i.e. 20 ns at 105 Pa and 20 μs at 133 Pa, meaning that a quasi-stationary description is possible in a high-collisionality situation and long rise-times (e.g. microsecond pulses at atmospheric pressure), failing for faster rise-times (e.g. nanosecond pulses for both pressures considered here).