Browsing by Author "Timofte, Aida"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemOn modeling, analytical study and homogenization for smart materials(Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2006) Timofte, AidaWe discuss existence, uniqueness, regularity, and homogenization results for some nonlinear time-dependent material models. One of the methods for proving existence and uniqueness is the so-called energetic formulation, based on a global stability condition and on an energy balance. As for the two-scale homogenization we use the recently developed method of periodic unfolding and periodic folding. We also take advantage of the abstract Gamma convergence theory for rate-independent evolutionary problems.
- ItemTwo-scale homogenization for evolutionary variational inequalities via the energetic formulation(Berlin : Weierstraß-Institut für Angewandte Analysis und Stochastik, 2006) Mielke, Alexander; Timofte, AidaThis paper is devoted to the two-scale homogenization for a class of rate-independent systems described by the energetic formulation or equivalently by an evolutionary variational inequality. In particular, we treat the classical model of linearized elastoplasticity with hardening. The associated nonlinear partial differential inclusion has periodically oscillating coefficients, and the aim is to find a limit problem for the case that the period tends to 0. Our approach is based on the notion of energetic solutions which is phrased in terms of a stability condition and an energy balance of an energy-storage functional and a dissipation functional. Using the recently developed method of weak and strong two-scale convergence via periodic unfolding, we show that these two functionals have a suitable two-scale limit, but now involving the macroscopic variable in the physical domain as well as the microscopic variable in the periodicity cell. Moreover, relying on an abstract theory of Gamma convergence for the energetic formulation using so-called joint recovery sequences it is possible to show that the solutions of the problem with periodicity converge to the energetic solution associated with the limit functionals.