Browsing by Author "Turner, Miles M."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemFoundations of plasma standards(Bristol : IOP Publ., 2023) Alves, Luís L.; Becker, Markus M.; van Dijk, Jan; Gans, Timo; Go, David B.; Stapelmann, Katharina; Tennyson, Jonathan; Turner, Miles M.; Kushner, Mark J.The field of low-temperature plasmas (LTPs) excels by virtue of its broad intellectual diversity, interdisciplinarity and range of applications. This great diversity also challenges researchers in communicating the outcomes of their investigations, as common practices and expectations for reporting vary widely in the many disciplines that either fall under the LTP umbrella or interact closely with LTP topics. These challenges encompass comparing measurements made in different laboratories, exchanging and sharing computer models, enabling reproducibility in experiments and computations using traceable and transparent methods and data, establishing metrics for reliability, and in translating fundamental findings to practice. In this paper, we address these challenges from the perspective of LTP standards for measurements, diagnostics, computations, reporting and plasma sources. This discussion on standards, or recommended best practices, and in some cases suggestions for standards or best practices, has the goal of improving communication, reproducibility and transparency within the LTP field and fields allied with LTPs. This discussion also acknowledges that standards and best practices, either recommended or at some point enforced, are ultimately a matter of judgment. These standards and recommended practices should not limit innovation nor prevent research breakthroughs from having real-time impact. Ultimately, the goal of our research community is to advance the entire LTP field and the many applications it touches through a shared set of expectations.
- ItemQDB: A new database of plasma chemistries and reactions(Bristol : IOP Publ., 2017) Tennyson, Jonathan; Rahimi, Sara; Hill, Christian; Tse, Lisa; Vibhakar, Anuradha; Akello-Egwel, Dolica; Brown, Daniel B.; Dzarasova, Anna; Hamilton, James R.; Jaksch, Dagmar; Mohr, Sebastian; Wren-Little, Keir; Bruckmeier, Johannes; Agarwal, Ankur; Bartschat, Klaus; Bogaerts, Annemie; Booth, Jean-Paul; Goeckner, Matthew J.; Hassouni, Khaled; Itikawa, Yukikazu; Braams, Bastiaan J; Krishnakumar, E.; Laricchiuta, Annarita; Mason, Nigel J.; Pandey, Sumeet; Petrovic, Zoran Lj.; Pu, Yi-Kang; Ranjan, Alok; Rauf, Shahid; Schulze, Julian; Turner, Miles M.; Ventzek, Peter; Whitehead, J. Christopher; Yoon, Jung-SikOne of the most challenging and recurring problems when modeling plasmas is the lack of data on the key atomic and molecular reactions that drive plasma processes. Even when there are data for some reactions, complete and validated datasets of chemistries are rarely available. This hinders research on plasma processes and curbs development of industrial applications. The QDB project aims to address this problem by providing a platform for provision, exchange, and validation of chemistry datasets. A new data model developed for QDB is presented. QDB collates published data on both electron scattering and heavy-particle reactions. These data are formed into reaction sets, which are then validated against experimental data where possible. This process produces both complete chemistry sets and identifies key reactions that are currently unreported in the literature. Gaps in the datasets can be filled using established theoretical methods. Initial validated chemistry sets for SF6/CF4/O2 and SF6/CF4/N2/H2 are presented as examples.