Browsing by Author "Wenger, Christian"
Now showing 1 - 20 of 29
Results Per Page
Sort Options
- ItemAbhörsichere, schaltbare und integrierbare SAW-Funkmodule, Teilprojekt: Integrierte (Bi)CMOS-ICs : Schlussbericht zum Verbundprojekt(Hannover : Technische Informationsbibliothek (TIB), 2012) Wenger, Christian[no abstract available]
- ItemAC electrokinetic immobilization of organic dye molecules(Berlin [u.a.] : Springer, 2020) Laux, Eva-Maria; Wenger, Christian; Bier, Frank F.; Hölzel, RalphThe application of inhomogeneous AC electric fields for molecular immobilization is a very fast and simple method that does not require any adaptions to the molecule’s functional groups or charges. Here, the method is applied to a completely new category of molecules: small organic fluorescence dyes, whose dimensions amount to only 1 nm or even less. The presented setup and the electric field parameters used allow immobilization of dye molecules on the whole electrode surface as opposed to pure dielectrophoretic applications, where molecules are attracted only to regions of high electric field gradients, i.e., to the electrode tips and edges. In addition to dielectrophoresis and AC electrokinetic flow, molecular scale interactions and electrophoresis at short time scales are discussed as further mechanisms leading to migration and immobilization of the molecules. [Figure not available: see fulltext.] © 2020, The Author(s).
- ItemAnalogue pattern recognition with stochastic switching binary CMOS-integrated memristive devices([London] : Macmillan Publishers Limited, part of Springer Nature, 2020) Zahari, Finn; Pérez, Eduardo; Mahadevaiah, Mamathamba Kalishettyhalli; Kohlstedt, Hermann; Wenger, Christian; Ziegler, MartinBiological neural networks outperform current computer technology in terms of power consumption and computing speed while performing associative tasks, such as pattern recognition. The analogue and massive parallel in-memory computing in biology differs strongly from conventional transistor electronics that rely on the von Neumann architecture. Therefore, novel bio-inspired computing architectures have been attracting a lot of attention in the field of neuromorphic computing. Here, memristive devices, which serve as non-volatile resistive memory, are employed to emulate the plastic behaviour of biological synapses. In particular, CMOS integrated resistive random access memory (RRAM) devices are promising candidates to extend conventional CMOS technology to neuromorphic systems. However, dealing with the inherent stochasticity of resistive switching can be challenging for network performance. In this work, the probabilistic switching is exploited to emulate stochastic plasticity with fully CMOS integrated binary RRAM devices. Two different RRAM technologies with different device variabilities are investigated in detail, and their potential applications in stochastic artificial neural networks (StochANNs) capable of solving MNIST pattern recognition tasks is examined. A mixed-signal implementation with hardware synapses and software neurons combined with numerical simulations shows that the proposed concept of stochastic computing is able to process analogue data with binary memory cells. © 2020, The Author(s).
- ItemControl of etch pit formation for epitaxial growth of graphene on germanium(Melville, NY : American Inst. of Physics, 2019) Becker, Andreas; Wenger, Christian; Dabrowski, JarekGraphene epitaxy on germanium by chemical vapor deposition is a promising approach to integrate graphene into microelectronics, but the synthesis is still accompanied by several challenges such as the high process temperature, the reproducibility of growth, and the formation of etch pits during the process. We show that the substrate cleaning by preannealing in molecular hydrogen, which is crucial to successful and reproducible graphene growth, requires a high temperature and dose. During both substrate cleaning and graphene growth, etch pits can develop under certain conditions and disrupt the synthesis process. We explain the mechanisms how these etch pits may form by preferential evaporation of substrate, how substrate topography is related to the state of the cleaning process, and how etch pit formation during graphene growth can be controlled by choice of a sufficiently high precursor flow. Our study explains how graphene can be grown reliably on germanium at high temperature and thereby lays the foundation for further optimization of the growth process. © 2019 Author(s).
- ItemCorrection: Interface-engineered reliable HfO2-based RRAM for synaptic simulation (Journal of Materials Chemistry C (2019) DOI: 10.1039/c9tc04880d)(London [u.a.] : RSC, 2019) Wang, Qiang; Niu, Gang; Roy, Sourav; Wang, Yankun; Zhang, Yijun; Wu, Heping; Zhai, Shijie; Bai, Wei; Shi, Peng; Song, Sannian; Song, Zhitang; Xie, Ya-Hong; Ye, Zuo-Guang; Wenger, Christian; Meng, Xiangjian; Ren, WeiThere was an error in the author list of this published article. The corresponding authors for this paper are Gang Niu (gangniu@xjtu.edu.cn) and Wei Ren (wren@mail.xjtu.edu.cn). The footnote indicating that Qiang Wang and Gang Niu contributed equally to the work was not intended. The corrected author list and notations are shown here. The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers. © The Royal Society of Chemistry 2019.
- ItemCurrent Modulation of a Heterojunction Structure by an Ultra-Thin Graphene Base Electrode(Basel : MDPI, 2018) Alvarado Chavarin, Carlos; Strobel, Carsten; Kitzmann, Julia; Di Bartolomeo, Antonio; Lukosius, Mindaugas; Albert, Matthias; Bartha, Johann Wolfgang; Wenger, ChristianGraphene has been proposed as the current controlling element of vertical transport in heterojunction transistors, as it could potentially achieve high operation frequencies due to its metallic character and 2D nature. Simulations of graphene acting as a thermionic barrier between the transport of two semiconductor layers have shown cut-off frequencies larger than 1 THz. Furthermore, the use of n-doped amorphous silicon, (n)-a-Si:H, as the semiconductor for this approach could enable flexible electronics with high cutoff frequencies. In this work, we fabricated a vertical structure on a rigid substrate where graphene is embedded between two differently doped (n)-a-Si:H layers deposited by very high frequency (140 MHz) plasma-enhanced chemical vapor deposition. The operation of this heterojunction structure is investigated by the two diode-like interfaces by means of temperature dependent current-voltage characterization, followed by the electrical characterization in a three-terminal configuration. We demonstrate that the vertical current between the (n)-a-Si:H layers is successfully controlled by the ultra-thin graphene base voltage. While current saturation is yet to be achieved, a transconductance of ~230 μS was obtained, demonstrating a moderate modulation of the collector-emitter current by the ultra-thin graphene base voltage. These results show promising progress towards the application of graphene base heterojunction transistors.
- ItemDesign and Fabrication of a BiCMOS Dielectric Sensor for Viscosity Measurements: A Possible Solution for Early Detection of COPD(Basel : MDPI, 2018) Soltani Zarrin, Pouya; Jamal, Farabi Ibne; Guha, Subhajit; Wessel, Jan; Kissinger, Dietmar; Wenger, ChristianThe viscosity variation of sputum is a common symptom of the progression of Chronic Obstructive Pulmonary Disease (COPD). Since the hydration of the sputum defines its viscosity level, dielectric sensors could be used for the characterization of sputum samples collected from patients for early diagnosis of COPD. In this work, a CMOS-based dielectric sensor for the real-time monitoring of sputum viscosity was designed and fabricated. A proper packaging for the ESD-protection and short-circuit prevention of the sensor was developed. The performance evaluation results show that the radio frequency sensor is capable of measuring dielectric constant of biofluids with an accuracy of 4.17%. Integration of this sensor into a portable system will result in a hand-held device capable of measuring viscosity of sputum samples of COPD-patients for diagnostic purposes.
- ItemDielectrophoretic immobilisation of antibodies on microelectrode arrays(Cambridge : Royal Society of Chemistry, 2013) Otto, Saskia; Kaletta, Udo; Bier, Frank F.; Wenger, Christian; Hölzel, RalphA silicon based chip device with a regular array of more than 100 000 cylindrical sub-microelectrodes has been developed for the dielectrophoretic (DEP) manipulation of nanoparticles and molecules in solution. It was fabricated by a standard CMOS (complementary metal oxide semiconductor) compatible process. The distribution of the electrical field gradient was calculated to predict the applicability of the setup. Heating due to field application was determined microscopically using a temperature sensitive fluorescent dye. Depending on voltage and frequency, temperature increase was found to be compatible with protein function. Successful field controlled immobilisation of biomolecules from solution was demonstrated with the autofluorescent protein R-phycoerythrin (RPE) and with fluorescently labelled IgG antibodies. Biological activity after DEP application was proven by immobilisation of an anti-RPE antibody and subsequent binding of RPE. These results demonstrate that the developed chip system allows the directed immobilisation of proteins onto microelectrodes by dielectrophoresis without the need for any chemical modification and that protein function is preserved. Being based on standard lithographical methods, further miniaturisation and on-chip integration of electronics towards a multiparameter single cell analysis system appear near at hand.
- ItemDielectrophoretic Immobilization of Yeast Cells Using CMOS Integrated Microfluidics(Basel : MDPI AG, 2020) Ettehad, Honeyeh Matbaechi; Soltani Zarrin, Pouya; Hölzel, Ralph; Wenger, ChristianThis paper presents a dielectrophoretic system for the immobilization and separation of live and dead cells. Dielectrophoresis (DEP) is a promising and efficient investigation technique for the development of novel lab-on-a-chip devices, which characterizes cells or particles based on their intrinsic and physical properties. Using this method, specific cells can be isolated from their medium carrier or the mixture of cell suspensions (e.g., separation of viable cells from non-viable cells). Main advantages of this method, which makes it favorable for disease (blood) analysis and diagnostic applications are, the preservation of the cell properties during measurements, label-free cell identification, and low set up cost. In this study, we validated the capability of complementary metal-oxide-semiconductor (CMOS) integrated microfluidic devices for the manipulation and characterization of live and dead yeast cells using dielectrophoretic forces. This approach successfully trapped live yeast cells and purified them from dead cells. Numerical simulations based on a two-layer model for yeast cells flowing in the channel were used to predict the trajectories of the cells with respect to their dielectric properties, varying excitation voltage, and frequency.
- ItemEnhanced thermal stability of yttrium oxide-based RRAM devices with inhomogeneous Schottky-barrier(Melville, NY : American Inst. of Physics, 2020) Piros, Eszter; Petzold, Stefan; Zintler, Alexander; Kaiser, Nico; Vogel, Tobias; Eilhardt, Robert; Wenger, Christian; Molina-Luna, Leopoldo; Alff, LambertThis work addresses the thermal stability of bipolar resistive switching in yttrium oxide-based resistive random access memory revealed through the temperature dependence of the DC switching behavior. The operation voltages, current levels, and charge transport mechanisms are investigated at 25 °C, 85 °C, and 125 °C, and show overall good temperature immunity. The set and reset voltages, as well as the device resistance in both the high and low resistive states, are found to scale inversely with increasing temperatures. The Schottky-barrier height was observed to increase from approximately 1.02 eV at 25 °C to approximately 1.35 eV at 125 °C, an uncommon behavior explained by interface phenomena. © 2020 Author(s).
- ItemGeometric conductive filament confinement by nanotips for resistive switching of HfO2-RRAM devices with high performance(London : Nature Publishing Group, 2016) Niu, Gang; Calka, Pauline; Auf der Maur, Matthias; Santoni, Francesco; Guha, Subhajit; Fraschke, Mirko; Hamoumou, Philippe; Gautier, Brice; Perez, Eduardo; Walczyk, Christian; Wenger, Christian; Di Carlo, Aldo; Alff, Lambert; Schroeder, ThomasFilament-type HfO2-based RRAM has been considered as one of the most promising candidates for future non-volatile memories. Further improvement of the stability, particularly at the “OFF” state, of such devices is mainly hindered by resistance variation induced by the uncontrolled oxygen vacancies distribution and filament growth in HfO2 films. We report highly stable endurance of TiN/Ti/HfO2/Si-tip RRAM devices using a CMOS compatible nanotip method. Simulations indicate that the nanotip bottom electrode provides a local confinement for the electrical field and ionic current density; thus a nano-confinement for the oxygen vacancy distribution and nano-filament location is created by this approach. Conductive atomic force microscopy measurements confirm that the filaments form only on the nanotip region. Resistance switching by using pulses shows highly stable endurance for both ON and OFF modes, thanks to the geometric confinement of the conductive path and filament only above the nanotip. This nano-engineering approach opens a new pathway to realize forming-free RRAM devices with improved stability and reliability.
- ItemGraphene Schottky Junction on Pillar Patterned Silicon Substrate(Basel : MDPI, 2019) Luongo, Giuseppe; Grillo, Alessandro; Giubileo, Filippo; Iemmo, Laura; Lukosius, Mindaugas; Chavarin, Carlos Alvarado; Wenger, Christian; Di Bartolomeo, AntonioA graphene/silicon junction with rectifying behaviour and remarkable photo-response was fabricated by transferring a graphene monolayer on a pillar-patterned Si substrate. The device forms a 0.11 eV Schottky barrier with 2.6 ideality factor at room temperature and exhibits strongly biasand temperature-dependent reverse current. Below room temperature, the reverse current grows exponentially with the applied voltage because the pillar-enhanced electric field lowers the Schottky barrier. Conversely, at higher temperatures, the charge carrier thermal generation is dominant and the reverse current becomes weakly bias-dependent. A quasi-saturated reverse current is similarly observed at room temperature when the charge carriers are photogenerated under light exposure. The device shows photovoltaic effect with 0.7% power conversion efficiency and achieves 88 A/W photoresponsivity when used as photodetector. © 2019 by the authors.
- ItemIn-Vitro Classification of Saliva Samples of COPD Patients and Healthy Controls Using Machine Learning Tools(New York, NY : IEEE, 2020) Zarrin, Pouya Soltani; Roeckendorf, Niels; Wenger, ChristianChronic Obstructive Pulmonary Disease (COPD) is a life-threatening lung disease and a major cause of morbidity and mortality worldwide. Although a curative therapy has yet to be found, permanent monitoring of biomarkers that refiect the disease progression plays a pivotal role for the effective management of COPD. The accurate examination of respiratory tract fiuids like saliva is a promising approach for staging disease and predicting its upcoming exacerbations in a Point-of-Care (PoC) environment. However, the concurrent consideration of patients' demographic and medical parameters is necessary for achieving accurate outcomes. Therefore, Machine Learning (ML) tools can play an important role for analyzing patient data and providing comprehensive results for the recognition of COPD in a PoC setting. As a result, the objective of this research work was to implement ML tools on data acquired from characterizing saliva samples of COPD patients and healthy controls as well as their demographic information for PoC recognition of the disease. For this purpose, a permittivity biosensor was used to characterize dielectric properties of saliva samples and, subsequently, ML tools were applied on the acquired data for classification. The XGBoost gradient boosting algorithm provided a high classification accuracy and sensitivity of 91.25% and 100%, respectively, making it a promising model for COPD evaluation. Integration of this model on a neuromorphic chip, in the future, will enable the real-time assessment of COPD in PoC, with low cost, low energy consumption, and high patient privacy. In addition, constant monitoring of COPD in a near-patient setup will enable the better management of the disease exacerbations.
- ItemMaterial insights of HfO2-based integrated 1-transistor-1-resistor resistive random access memory devices processed by batch atomic layer deposition(London : Nature Publishing Group, 2016) Niu, Gang; Kim, Hee-Dong; Roelofs, Robin; Perez, Eduardo; Schubert, Markus Andreas; Zaumseil, Peter; Costina, Ioan; Wenger, ChristianWith the continuous scaling of resistive random access memory (RRAM) devices, in-depth understanding of the physical mechanism and the material issues, particularly by directly studying integrated cells, become more and more important to further improve the device performances. In this work, HfO2-based integrated 1-transistor-1-resistor (1T1R) RRAM devices were processed in a standard 0.25 μm complementary-metal-oxide-semiconductor (CMOS) process line, using a batch atomic layer deposition (ALD) tool, which is particularly designed for mass production. We demonstrate a systematic study on TiN/Ti/HfO2/TiN/Si RRAM devices to correlate key material factors (nano-crystallites and carbon impurities) with the filament type resistive switching (RS) behaviours. The augmentation of the nano-crystallites density in the film increases the forming voltage of devices and its variation. Carbon residues in HfO2 films turn out to be an even more significant factor strongly impacting the RS behaviour. A relatively higher deposition temperature of 300 °C dramatically reduces the residual carbon concentration, thus leading to enhanced RS performances of devices, including lower power consumption, better endurance and higher reliability. Such thorough understanding on physical mechanism of RS and the correlation between material and device performances will facilitate the realization of high density and reliable embedded RRAM devices with low power consumption.
- ItemMaterialien für extrem hohe integrierte Kapazitäten (MaxCaps), Teilprojekt: Präparation und Charakterisierung von MIM-Kondensatoren : Schlussbericht zum Verbundprojekt(Hannover : Technische Informationsbibliothek (TIB), 2011) Wenger, Christian[no abstract available]
- ItemModulating the Filamentary-Based Resistive Switching Properties of HfO2 Memristive Devices by Adding Al2O3 Layers(Basel : MDPI, 2022) Kalishettyhalli Mahadevaiah, Mamathamba; Perez, Eduardo; Lisker, Marco; Schubert, Markus Andreas; Perez-Bosch Quesada, Emilio; Wenger, Christian; Mai, AndreasThe resistive switching properties of HfO2 based 1T-1R memristive devices are electrically modified by adding ultra-thin layers of Al2 O3 into the memristive device. Three different types of memristive stacks are fabricated in the 130 nm CMOS technology of IHP. The switching properties of the memristive devices are discussed with respect to forming voltages, low resistance state and high resistance state characteristics and their variabilities. The experimental I–V characteristics of set and reset operations are evaluated by using the quantum point contact model. The properties of the conduction filament in the on and off states of the memristive devices are discussed with respect to the model parameters obtained from the QPC fit.
- ItemNeuromorphic on-chip recognition of saliva samples of COPD and healthy controls using memristive devices([London] : Macmillan Publishers Limited, part of Springer Nature, 2020) Zarrin, Pouya Soltani; Zahari, Finn; Mahadevaiah, Mamathamba K.; Perez, Eduardo; Kohlstedt, Hermann; Wenger, ChristianChronic Obstructive Pulmonary Disease (COPD) is a life-threatening lung disease, affecting millions of people worldwide. Implementation of Machine Learning (ML) techniques is crucial for the effective management of COPD in home-care environments. However, shortcomings of cloud-based ML tools in terms of data safety and energy efficiency limit their integration with low-power medical devices. To address this, energy efficient neuromorphic platforms can be used for the hardware-based implementation of ML methods. Therefore, a memristive neuromorphic platform is presented in this paper for the on-chip recognition of saliva samples of COPD patients and healthy controls. Results of its performance evaluations showed that the digital neuromorphic chip is capable of recognizing unseen COPD samples with accuracy and sensitivity values of 89% and 86%, respectively. Integration of this technology into personalized healthcare devices will enable the better management of chronic diseases such as COPD. © 2020, The Author(s).
- ItemOperando diagnostic detection of interfacial oxygen ‘breathing’ of resistive random access memory by bulk-sensitive hard X-ray photoelectron spectroscopy(London [u.a.] : Taylor & Francis, 2019) Niu, Gang; Calka, Pauline; Huang, Peng; Sharath, Sankaramangalam Ulhas; Petzold, Stefan; Gloskovskii, Andrei; Fröhlich, Karol; Zhao, Yudi; Kan, Jinfeng; Schubert, Markus Andreas; Bärwolf, Florian; Ren, Wei; Ye, Zuo-Guang; Perez, Eduardo; Wenger, Christian; Alff, Lambert; Schroeder, ThomasThe HfO2-based resistive random access memory (RRAM) is one of the most promising candidates for non-volatile memory applications. The detection and examination of the dynamic behavior of oxygen ions/vacancies are crucial to deeply understand the microscopic physical nature of the resistive switching (RS) behavior. By using synchrotron radiation based, non-destructive and bulk-sensitive hard X-ray photoelectron spectroscopy (HAXPES), we demonstrate an operando diagnostic detection of the oxygen ‘breathing’ behavior at the oxide/metal interface, namely, oxygen migration between HfO2 and TiN during different RS periods. The results highlight the significance of oxide/metal interfaces in RRAM, even in filament-type devices. IMPACT STATEMENT: The oxygen ‘breathing’ behavior at the oxide/metal interface of filament-type resistive random access memory devices is operandoly detected using hard X-ray photoelectron spectroscopy as a diagnostic tool. © 2019, © 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
- ItemOptimization of Multi-Level Operation in RRAM Arrays for In-Memory Computing(Basel : MDPI, 2021) Pérez, Eduardo; Pérez-Ávila, Antonio Javier; Romero-Zaliz, Rocío; Mahadevaiah, Mamathamba Kalishettyhalli; Pérez-Bosch Quesada, Emilio; Roldán, Juan Bautista; Jiménez-Molinos, Francisco; Wenger, ChristianAccomplishing multi-level programming in resistive random access memory (RRAM) arrays with truly discrete and linearly spaced conductive levels is crucial in order to implement synaptic weights in hardware-based neuromorphic systems. In this paper, we implemented this feature on 4-kbit 1T1R RRAM arrays by tuning the programming parameters of the multi-level incremental step pulse with verify algorithm (M-ISPVA). The optimized set of parameters was assessed by comparing its results with a non-optimized one. The optimized set of parameters proved to be an effective way to define non-overlapped conductive levels due to the strong reduction of the device-to-device variability as well as of the cycle-to-cycle variability, assessed by inter-levels switching tests and during 1 k reset-set cycles. In order to evaluate this improvement in real scenarios, the experimental characteristics of the RRAM devices were captured by means of a behavioral model, which was used to simulate two different neuromorphic systems: an 8 × 8 vector-matrix-multiplication (VMM) accelerator and a 4-layer feedforward neural network for MNIST database recognition. The results clearly showed that the optimization of the programming parameters improved both the precision of VMM results as well as the recognition accuracy of the neural network in about 6% compared with the use of non-optimized parameters.
- ItemPerfluorodecyltrichlorosilane-based seed-layer for improved chemical vapour deposition of ultrathin hafnium dioxide films on graphene(London : Nature Publishing Group, 2016) Kitzmann, Julia; Göritz, Alexander; Fraschke, Mirko; Lukosius, Mindaugas; Wenger, Christian; Wolff, Andre; Lupina, GrzegorzWe investigate the use of perfluorodecyltrichlorosilane-based self-assembled monolayer as seeding layer for chemical vapour deposition of HfO2 on large area CVD graphene. The deposition and evolution of the FDTS-based seed layer is investigated by X-ray photoelectron spectroscopy, Auger electron spectroscopy, and transmission electron microscopy. Crystalline quality of graphene transferred from Cu is monitored during formation of the seed layer as well as the HfO2 growth using Raman spectroscopy. We demonstrate that FDTS-based seed layer significantly improves nucleation of HfO2 layers so that graphene can be coated in a conformal way with HfO2 layers as thin as 10 nm. Proof-of-concept experiments on 200 mm wafers presented here validate applicability of the proposed approach to wafer scale graphene device fabrication.