Browsing by Author "Wessling, Matthias"
Now showing 1 - 20 of 36
Results Per Page
Sort Options
- Item3D‐Printed Bioreactor with Integrated Impedance Spectroscopy for Cell Barrier Monitoring(Weinheim : Wiley, 2021) Linz, Georg; Rauer, Sebastian Bernhard; Kuhn, Yasmin; Wennemaring, Simon; Siedler, Laura; Singh, Smriti; Wessling, MatthiasCell culture experiments often suffer from limited commercial availability of laboratory-scale bioreactors, which allow experiments to be conducted under flow conditions and additional online monitoring techniques. A novel 3D-printed bioreactor with a homogeneously distributed flow field enabling epithelial cell culture experiments and online barrier monitoring by integrated electrodes through electrical impedance spectroscopy (EIS) is presented. Transparent and conductive indium tin oxide glass as current-injecting electrodes allows direct visualization of the cells, while measuring EIS simultaneously. The bioreactor's design considers the importance of a homogeneous electric field by placing the voltage pick-up electrodes in the electrical field. The device's functionality is demonstrated by the cultivation of the epithelial cell line Caco-2 under continuous flow and monitoring of the cell layer by online EIS. The collected EIS data were fitted by an equivalent electric circuit, resulting in the cell layer's resistance and capacitance. This data is used to monitor the cell layer's reaction to ethylene glycol-bis-(2-aminoethyl ether)-N,N,N′,N′-tetraacetic acid and forskolin. These two model substances show the power of impedance spectroscopy as a non-invasive way to characterize cell barriers. In addition, the bioreactor design is available as a print-ready file in the Appendix, enabling its use for other scientific institutions.
- ItemAtomic layer deposition for efficient oxygen evolution reaction at Pt/Ir catalyst layers(Frankfurt, M. : Beilstein-Institut zur Förderung der Chemischen Wissenschaften, 2020) Schlicht, Stefanie; Percin, Korcan; Kriescher, Stefanie; Hofer, André; Weidlich, Claudia; Wessling, Matthias; Bachmann, JulienWe provide a direct comparison of two distinct methods of Ti felt surface treatment and Pt/Ir electrocatalyst deposition for the positive electrode of regenerative fuel cells and vanadium-air redox flow batteries. Each method is well documented in the literature, and this paper provides a direct comparison under identical experimental conditions of electrochemical measurements and in identical units. In the first method, based on classical engineering, the bimetallic catalyst is deposited by dip-coating in a precursor solution of the salts followed by their thermal decomposition. In the alternative method, more academic in nature, atomic layer deposition (ALD) is applied to the felts after anodization. ALD allows for a controlled coating with ultralow noble-metal loadings in narrow pores. In acidic electrolyte, the ALD approach yields improved mass activity (557 A·g-1 as compared to 80 A·g-1 at 0.39 V overpotential) on the basis of the noble-metal loading, as well as improved stability. © 2020 Schlicht et al.
- ItemAutomated tangential-flow diafiltration device(Amsterdam : Elsevier, 2021) Lüken, Arne; Bruckhaus, Maike; Kosfeld, Udo; Emondts, Meike; Wessling, MatthiasTangential flow filtration (TFF) is a chemical unit operation used to purify and concentrate liquid suspensions of colloids, proteins, or cells. The solution flows tangentially across a membrane, such that a selective part of the fluid permeates the membrane while the filtrated matter is retained, increasing its concentration. TFF is a mild mechanical purification method that does not interact chemically with the filtrate. It is applied in sensitive separation tasks in protein chemistry, microbiology, or immunology. It is a fast alternative for dialysis applications, also applicable in the field of colloid purification. However, the costs of automated lab-scale devices (30,000 €) and the consumable membrane modules (100–600 €) make TFF currently hardly accessible for lab-scale polymer researchers. Therefore, we built a low-cost TFF system (2400 €) partly automated by an Arduino microcontroller and optimized for diafiltration buffer exchange and concentration processes in soft matter colloid research. We use medical hemodialysis membrane modules that only cost a share (20–50 €) of alternative TFF modules, and we demonstrate the functionality of the system for an exemplary colloidal microgel purification process.
- ItemBiocompatible Micron-Scale Silk Fibers Fabricated by Microfluidic Wet Spinning(Weinheim : Wiley-VCH, 2021) Lüken, Arne; Geiger, Matthias; Steinbeck, Lea; Joel, Anna-Christin; Lampert, Angelika; Linkhorst, John; Wessling, MatthiasFor successful material deployment in tissue engineering, the material itself, its mechanical properties, and the microscopic geometry of the product are of particular interest. While silk is a widely applied protein-based tissue engineering material with strong mechanical properties, the size and shape of artificially spun silk fibers are limited by existing processes. This study adjusts a microfluidic spinneret to manufacture micron-sized wet-spun fibers with three different materials enabling diverse geometries for tissue engineering applications. The spinneret is direct laser written (DLW) inside a microfluidic polydimethylsiloxane (PDMS) chip using two-photon lithography, applying a novel surface treatment that enables a tight print-channel sealing. Alginate, polyacrylonitrile, and silk fibers with diameters down to 1 µm are spun, while the spinneret geometry controls the shape of the silk fiber, and the spinning process tailors the mechanical property. Cell-cultivation experiments affirm bio-compatibility and showcase an interplay between the cell-sized fibers and cells. The presented spinning process pushes the boundaries of fiber fabrication toward smaller diameters and more complex shapes with increased surface-to-volume ratio and will substantially contribute to future tailored tissue engineering materials for healthcare applications. © 2021 The Authors. Advanced Healthcare Materials published by Wiley-VCH GmbH
- ItemCo-generation of Ammonia and H2 from H2O Vapor and N2 Using a Membrane Electrode Assembly(Weinheim : Wiley-VCH, 2020) Kugler, Kurt; Kriescher, Stefanie M.A.; Giela, Martin; Hosseiny, Schwan; Thimm, Kristof; Wessling, MatthiasThe direct electrochemical synthesis of NH3 from nitrogen and water vapor without the use of a fossil carbon source is highly desired. This synthesis is a viable option to store energy and produce fertilizer precursors. Here, a new Pt-free membrane electrode assembly is presented. An electrochemical membrane reactor demonstrates the feasibility of co-generating NH3 and H2 directly from nitrogen and water vapor at ambient conditions. An unprecedented high NH3-specific current efficiency of up to 27.5% using Ti as cathodic catalyst is reported. The co-generation can be tuned by the balance of process parameters. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
- ItemDirect Observation of Deformation in Microgel Filtration([London] : Macmillan Publishers Limited, part of Springer Nature, 2019) Linkhorst, John; Rabe, Jonas; Hirschwald, Lukas T.; Kuehne, Alexander J. C.; Wessling, MatthiasColloidal filtration processes using porous membranes suffer from productivity loss due to colloidal matter retention and continuous build-up by the retained matter. Especially during filtration of soft matter, the deformation of the individual colloids that make up the filter cake may be significant; however, this deformation and its impact remain unresolved so far. Yet, understanding the deformation on the single colloid level as well as on the ensemble level is important to be able to deconvolute filter cake properties from resistance increase of the membrane either by simultaneous internal adsorption or blocking of pores. Here, we report on the compression of a filter cake by filtrating soft microgels in a microfluidic channel in front of a model membrane. To study the single colloid deformation amorphous and crystalline domains were built up in front of the membrane and visualized on-line using confocal fluorescence microscopy while adjusting the degree of permeation, i.e., the transmembrane flux. Results show locally pronounced asymmetric deformation in amorphous domains, while the microgels in colloidal crystals approached regular polyeder shape. Increasing the flux beyond the maximum colloid deformation results in non-isochoric microgel behavior. The presented methodology enables a realistic description of complex colloidal matter deposits during filtration.
- ItemFreestanding PAC/CNT microtubes remove sulfamethoxazole from water through a temperature-assisted cyclic process(New York, NY [u.a.] : Science Direct, 2020) Mohseni, Mojtaba; Postacchini, Pietro; Demeestere, Kristof; Du Laing, Gijs; Yüce, Süleyman; Wessling, Matthias[No abstract available]
- ItemHigh-Throughput Production of Micrometer Sized Double Emulsions and Microgel Capsules in Parallelized 3D Printed Microfluidic Devices(Basel : MDPI, 2019) Jans, Alexander; Lölsberg, Jonas; Omidinia-Anarkoli, Abdolrahman; Viermann, Robin; Möller, Martin; De Laporte, Laura; Wessling, Matthias; Kuehne, Alexander J. C.Double emulsions are useful geometries as templates for core-shell particles, hollow sphere capsules, and for the production of biomedical delivery vehicles. In microfluidics, two approaches are currently being pursued for the preparation of microfluidic double emulsion devices. The first approach utilizes soft lithography, where many identical double-flow-focusing channel geometries are produced in a hydrophobic silicone matrix. This technique requires selective surface modification of the respective channel sections to facilitate alternating wetting conditions of the channel walls to obtain monodisperse double emulsion droplets. The second technique relies on tapered glass capillaries, which are coaxially aligned, so that double emulsions are produced after flow focusing of two co-flowing streams. This technique does not require surface modification of the capillaries, as only the continuous phase is in contact with the emulsifying orifice; however, these devices cannot be fabricated in a reproducible manner, which results in polydisperse double emulsion droplets, if these capillary devices were to be parallelized. Here, we present 3D printing as a means to generate four identical and parallelized capillary device architectures, which produce monodisperse double emulsions with droplet diameters in the range of 500 µm. We demonstrate high throughput synthesis of W/O/W and O/W/O double emulsions, without the need for time-consuming surface treatment of the 3D printed microfluidic device architecture. Finally, we show that we can apply this device platform to generate hollow sphere microgels.
- ItemHomogeneous Catalyst Recycling and Separation of a Multicomponent Mixture Using Organic Solvent Nanofiltration(Weinheim : Wiley-VCH, 2019) Schnoor, Johann-Kilian; Fuchs, Martin; Böcking, Axel; Wessling, Matthias; Liauw, Marcel A.In homogeneous catalysis, the application of organic solvent nanofiltration (OSN) has become a well-known alternative to common recycling methods. Even though some OSN membranes are commercially available, their classification and the scope of application have to be determined for the specific solvent mixture. The commercial membrane Evoniks DuraMem® 300 was tested in a mixture of ethanol, ethyl acetate, and cyclohexane with magnesium triflate as possible catalyst. The cross permeate fluxes were measured for two transmembrane pressures and the hydrodynamic radii of the components were determined. Some of the components in the ternary mixture are retained, which makes the membrane also suitable for fractioning thereof. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
- ItemMicrofluidic cell sorting: Towards improved biocompatibility of extracorporeal lung assist devices([London] : Macmillan Publishers Limited, part of Springer Nature, 2018) Bleilevens, Christian; Lölsberg, Jonas; Cinar, Arne; Knoben, Maren; Grottke, Oliver; Rossaint, Rolf; Wessling, MatthiasExtracorporeal lung assist technology is one of the last options in critical care medicine to treat patients suffering from severe oxygenation and decarboxylation disorders. Platelet activation along with the consequent thrombus formation is a potentially life-threatening complication of this technique. To avoid platelet-dependent clot formation, this study aims at developing a microfluidic cell sorting chip that can bypass platelets prior to the membrane oxygenator of the extracorporeal lung assist device. The cell sorting chips were produced by maskless dip-in laser lithography, followed by soft lithography replication using PDMS. Citrated porcine whole blood with a clinically relevant haematocrit of 17% was used for the cell sorting experiments involving three different blood flow rates. The joint effects of flow focusing and hydrodynamic lifting forces within the cell sorting chip resulted in a reduction of up to 57% of the baseline platelet count. This cell sorting strategy is suitable for the continuous and label-free separation of red blood cells and platelets and is potentially applicable for increasing the biocompatibility and lifetime of current extracorporeal lung assist devices.
- ItemMicrofluidic colloid filtration([London] : Macmillan Publishers Limited, part of Springer Nature, 2016) Linkhorst, John; Beckmann, Torsten; Go, Dennis; Kuehne, Alexander J. C.; Wessling, MatthiasFiltration of natural and colloidal matter is an essential process in today’s water treatment processes. The colloidal matter is retained with the help of micro- and nanoporous synthetic membranes. Colloids are retained in a “cake layer” – often coined fouling layer. Membrane fouling is the most substantial problem in membrane filtration: colloidal and natural matter build-up leads to an increasing resistance and thus decreasing water transport rate through the membrane. Theoretical models exist to describe macroscopically the hydrodynamic resistance of such transport and rejection phenomena; however, visualization of the various phenomena occurring during colloid retention is extremely demanding. Here we present a microfluidics based methodology to follow filter cake build up as well as transport phenomena occuring inside of the fouling layer. The microfluidic colloidal filtration methodology enables the study of complex colloidal jamming, crystallization and melting processes as well as translocation at the single particle level.
- ItemMicrotubular Gas Diffusion Electrode Based on Ruthenium-Carbon Nanotubes for Ambient Electrochemical Nitrogen Reduction to Ammonia(Weinheim : Wiley-VCH, 2020) Wei, Xin; Vogel, Dominik; Keller, Laura; Kriescher, Stefanie; Wessling, MatthiasThe drawback of the energy-intensive Haber-Bosch process promotes the research and development of alternative ammonia (NH3) synthesis approaches. The electrochemical nitrogen (N2) reduction reaction (eNRR) may offer a promising method to produce NH3 independent of fossil-fuel-based hydrogen production. However, the low solubility and the low-efficiency mass transport of N2 in aqueous electrolytes are still among the challenges facing the feasibility of eNRR. Herein, we demonstrate a microtubular ruthenium-carbon nanotube gas diffusion electrode (Ru−CNT GDE), for the first time, applying it to electrochemical NH3 synthesis in an H-type cell under ambient conditions. The highest reported Ru-catalyzed NH3 yield rate of 2.1×10−9 mol/cm2 s and high faradaic efficiency of 13.5 % were achieved, showing the superior effect of Ru−CNT GDEs on the eNRR performance. This work provides a new approach for the design and fabrication of self-standing catalyst-loaded GDEs for eNRR. © 2020 The Authors. ChemElectroChem published by Wiley-VCH GmbH
- ItemMitigating Water Crossover by Crosslinked Coating of Cation‐Exchange Membranes for Brine Concentration(Weinheim : Wiley, 2021) Rommerskirchen, Alexandra; Roth, Hannah; Linnartz, Christian J.; Egidi, Franziska; Kneppeck, Christian; Roghmans, Florian; Wessling, MatthiasUndesired water crossover through ion-exchange membranes is a significant limitation in electrically driven desalination processes. The effect of mitigating water crossover is twofold: 1) The desalination degree is less reduced due to the unwanted removal of water, and 2) the brine concentration is increased due to decreased dilution by an unwanted crossover of water molecules. Hence, water crossover limits the desalination and concentration efficiency of the processes, while the energy demand to achieve a certain level of desalination or concentration increases. This effect is especially pronounced when treating high salinity solutions, which goes hand in hand with the crossover of many ions through the ion-exchange membranes. A crosslinked coating for cation-exchange membranes (CEMs) is presented in this work, which can significantly mitigate such undesired water crossover. The efficacy is demonstrated using the flow-electrode capacitive deionization process applied for desalination and concentration of saline brines at feed concentrations of 60 and 120 g L−1 NaCl. With just a single coated CEM, the water crossover was reduced by up to 54%.
- ItemMulti-walled carbon nanotube-based composite materials as catalyst support for water–gas shift and hydroformylation reactions(London : RSC Publishing, 2019) Wolf, Patrick; Logemann, Morten; Schörner, Markus; Keller, Laura; Haumann, Marco; Wessling, MatthiasIn times of depleting fossil fuel reserves, optimizing industrial catalytic reactions has become increasingly important. One possibility for optimization is the use of homogenous catalysts, which are advantageous over heterogeneous catalysts because of mild reaction conditions as well as higher selectivity and activity. A new emerging technology, supported ionic liquid phase (SILP), was developed to permanently immobilize homogeneous catalyst complexes for continuous processes. However, these SILP catalysts are unable to form freestanding supports by themselves. This study presents a new method to introduce the SILP system into a support made from multi-walled carbon nanotubes (MWCNT). In a first step, SILP catalysts were prepared for hydroformylation as well as low-temperature water–gas shift (WGS) reactions. These catalysts were integrated into freestanding microtubes formed from MWCNTs, with silica (for hydroformylation) or alumina particles (for WGS) incorporated. In hydroformylation, the activity increased significantly by around 400% when the pure MWCNT material was used as SILP support. An opposite trend was observed for WGS, where pure alumina particles exhibited the highest activity. A significant advantage of the MWCNT composite materials is the possibility to coat them with separation layers, which allows their application in membrane reactors for more efficient processes.
- ItemOn charge percolation in slurry electrodes used in vanadium redox flow batteries(Amsterdam [u.a.] : Elsevier Science, 2019) Lohaus, Johannes; Rall, Deniz; Kruse, Maximilian; Steinberger, Viktoria; Wessling, MatthiasIn vanadium redox flow battery systems porous carbon felts are commonly employed as electrodes inside the flow channel. Recently, slurry electrodes (or flow suspension electrodes) were introduced as a potentially viable electrode system. Such electrode systems are little understood so far. Mass, momentum and charge transfer phenomena co-occur, interactions with each other are nearly impossible to capture experimentally. We present a novel discrete model of the particulate phase combining theories from fluid dynamics, colloidal physics, and electrochemistry with a coupled CFD-DEM approach. The methodology allows to visualize local phenomena occurring during the charging of the battery and to compute the net current of the slurry electrode system. We demonstrate that an increasing particle volume fraction enables the formation of conducting networks in the flow electrode until a threshold is reached. Our study concludes, that the assumption of all particles participating in the charge transfer as assumed in pure CFD investigations is not necessarily valid.
- ItemOn the Dynamical Regimes of Pattern-Accelerated Electroconvection([London] : Macmillan Publishers Limited, part of Springer Nature, 2016) Davidson, Scott M.; Wessling, Matthias; Mani, AliRecent research has established that electroconvection can enhance ion transport at polarized surfaces such as membranes and electrodes where it would otherwise be limited by diffusion. The onset of such overlimiting transport can be influenced by the surface topology of the ion selective membranes as well as inhomogeneities in their electrochemical properties. However, there is little knowledge regarding the mechanisms through which these surface variations promote transport. We use high-resolution direct numerical simulations to develop a comprehensive analysis of electroconvective flows generated by geometric patterns of impermeable stripes and investigate their potential to regularize electrokinetic instabilities. Counterintuitively, we find that reducing the permeable area of an ion exchange membrane, with appropriate patterning, increases the overall ion transport rate by up to 80%. In addition, we present analysis of nonpatterned membranes and find a novel regime of electroconvection where a multivalued current is possible due to the coexistence of multiple convective states.
- ItemOn the Mixed Gas Behavior of Organosilica Membranes Fabricated by Plasma-Enhanced Chemical Vapor Deposition (PECVD)(Basel : MDPI, 2022-10-13) Rubner, Jens; Skribbe, Soukaina; Roth, Hannah; Kleines, Lara; Dahlmann, Rainer; Wessling, MatthiasSelective, nanometer-thin organosilica layers created by plasma-enhanced chemical vapor deposition (PECVD) exhibit selective gas permeation behavior. Despite their promising pure gas performance, published data with regard to mixed gas behavior are still severely lacking. This study endeavors to close this gap by investigating the pure and mixed gas behavior depending on temperatures from 0 °C to 60 °C for four gases (helium, methane, carbon dioxide, and nitrogen) and water vapor. For the two permanent gases, helium and methane, the studied organosilica membrane shows a substantial increase in selectivity from αHe/CH4 = 9 at 0 °C to αHe/CH4 = 40 at 60 °C for pure as well as mixed gases with helium permeance of up to 300 GPU. In contrast, a condensable gas such as CO2 leads to a decrease in selectivity and an increase in permeance compared to its pure gas performance. When water vapor is present in the feed gas, the organosilica membrane shows even stronger deviations from pure gas behavior with a permeance loss of about 60 % accompanied by an increase in ideal selectivity αHe/CO2 from 8 to 13. All in all, the studied organosilica membrane shows very promising results for mixed gases. Especially for elevated temperatures, there is a high potential for separation by size exclusion.
- ItemOn the Resistances of a Slurry Electrode Vanadium Redox Flow Battery(Weinheim : Wiley-VCH, 2020) Percin, Korcan; van der Zee, Bart; Wessling, MatthiasWe studied the half-cell performance of a slurry-based vanadium redox flow battery via the polarization and electrochemical impedance spectroscopy methods. First, the conductive static mixers are examined and lower ohmic and diffusion resistances are shown. Further analyses of the slurry electrodes for the catholyte (VO2+−VO2 +) and anolyte (V3+−V2+) are presented for the graphite powder slurry containing up to 15.0 wt.% particle content. Overall, the anolyte persists as the more resistive half-cell, while ohmic and diffusion-related limitations are the dominating resistances for both electrolytes. The battery is further improved by the addition of Ketjen black nanoparticles, which results in lower cell resistances. The best results are achieved when 0.5 wt.% Ketjen black nanoparticles are dispersed with graphite powder since the addition of nanoparticles reduces ohmic, charge transfer and mass diffusion resistances by improving particle-particle dynamics. The results prove the importance of understanding resistances in a slurry electrode system. © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
- ItemParticle movements provoke avalanche-like compaction in soft colloid filter cakes([London] : Macmillan Publishers Limited, part of Springer Nature, 2021) Lüken, Arne; Stüwe, Lucas; Lohaus, Johannes; Linkhorst, John; Wessling, MatthiasDuring soft matter filtration, colloids accumulate in a compressible porous cake layer on top of the membrane surface. The void size between the colloids predominantly defines the cake-specific permeation resistance and the corresponding filtration efficiency. While higher fluxes are beneficial for the process efficiency, they compress the cake and increase permeation resistance. However, it is not fully understood how soft particles behave during cake formation and how their compression influences the overall cake properties. This study visualizes the formation and compression process of soft filter cakes in microfluidic model systems. During cake formation, we analyze single-particle movements inside the filter cake voids and how they interact with the whole filter cake morphology. During cake compression, we visualize reversible and irreversible compression and distinguish the two phenomena. Finally, we confirm the compression phenomena by modeling the soft particle filter cake using a CFD-DEM approach. The results underline the importance of considering the compression history when describing the filter cake morphology and its related properties. Thus, this study links single colloid movements and filter cake compression to the overall cake behavior and narrows the gap between single colloid events and the filtration process.
- ItemPolymeric Membranes With Sufficient Thermo‐Mechanical Stability to Deploy Temperature Enhanced Backwash(Weinheim : Wiley-VCH, 2021) Aumeier, Benedikt M.; Vollmer, Fabian; Lenfers, Simon; Yüce, Süleyman; Wessling, MatthiasThe alternative membrane cleaning method Temperature Enhanced Backwash exploits elevated temperatures of typically 125 °C to realize high shear rate. This exceeds usual operating temperatures by far. Therefore, the thermo-mechanical properties of polymeric membranes were investigated. A repeated load cycle testing was suited and sensitive to detect the failure of membrane material and potting. All tested PES membranes showed to be stable during the repeated load cycle testing. The potting adhesive may be decisive, thus, a tensile test at 125 °C is proposed. © 2021 The Authors. Chemie Ingenieur Technik published by Wiley-VCH GmbH