Browsing by Author "Xu, Zhen"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemInterlaboratory study assessing the analysis of supercapacitor electrochemistry data(New York, NY [u.a.] : Elsevier, 2023) Gittins, Jamie W.; Chen, Yuan; Arnold, Stefanie; Augustyn, Veronica; Balducci, Andrea; Brousse, Thierry; Frackowiak, Elzbieta; Gómez-Romero, Pedro; Kanwade, Archana; Köps, Lukas; Jha, Plawan Kumar; Lyu, Dongxun; Meo, Michele; Pandey, Deepak; Pang, Le; Presser, Volker; Rapisarda, Mario; Rueda-García, Daniel; Saeed, Saeed; Shirage, Parasharam M.; Ślesiński, Adam; Soavi, Francesca; Thomas, Jayan; Titirici, Maria-Magdalena; Wang, Hongxia; Xu, Zhen; Yu, Aiping; Zhang, Maiwen; Forse, Alexander C.Supercapacitors are fast-charging energy storage devices of great importance for developing robust and climate-friendly energy infrastructures for the future. Research in this field has seen rapid growth in recent years, therefore consistent reporting practices must be implemented to enable reliable comparison of device performance. Although several studies have highlighted the best practices for analysing and reporting data from such energy storage devices, there is yet to be an empirical study investigating whether researchers in the field are correctly implementing these recommendations, and which assesses the variation in reporting between different laboratories. Here we address this deficit by carrying out the first interlaboratory study of the analysis of supercapacitor electrochemistry data. We find that the use of incorrect formulae and researchers having different interpretations of key terminologies are major causes of variability in data reporting. Furthermore we highlight the more significant variation in reported results for electrochemical profiles showing non-ideal capacitive behaviour. From the insights gained through this study, we make additional recommendations to the community to help ensure consistent reporting of performance metrics moving forward.
- ItemTwinned growth behaviour of two-dimensional materials(London : Nature Publishing Group, 2016) Zhang, Tao; Jiang, Bei; Xu, Zhen; Mendes, Rafael G.; Xiao, Yao; Chen, Linfeng; Fang, Liwen; Gemming, Thomas; Chen, Shengli; Rümmeli, Mark H.; Fu, LeiTwinned growth behaviour in the rapidly emerging area of two-dimensional nanomaterials still remains unexplored although it could be exploited to fabricate heterostructure and superlattice materials. Here we demonstrate how one can utilize the twinned growth relationship between two two-dimensional materials to construct vertically stacked heterostructures. As a demonstration, we achieve 100% overlap of the two transition metal dichalcogenide layers constituting a ReS2/WS2 vertical heterostructure. Moreover, the crystal size of the stacked structure is an order of magnitude larger than previous reports. Such twinned transition metal dichalcogenides vertical heterostructures exhibit great potential for use in optical, electronic and catalytic applications. The simplicity of the twinned growth can be utilized to expand the fabrication of other heterostructures or two-dimensional material superlattice and this strategy can be considered as an enabling technology for research in the emerging field of two-dimensional van der Waals heterostructures.