### Browsing by Author "Xu, Yong"

Now showing 1 - 4 of 4

###### Results Per Page

###### Sort Options

- ItemCytocompatible, Injectable, and Electroconductive Soft Adhesives with Hybrid Covalent/Noncovalent Dynamic Network(Weinheim : Wiley-VCH, 2019) Xu, Yong; Patsis, Panagiotis A.; Hauser, Sandra; Voigt, Dagmar; Rothe, Rebecca; Günther, Markus; Cui, Meiying; Yang, Xuegeng; Wieduwild, Robert; Eckert, Kerstin; Neinhuis, Christoph; Akbar, Teuku Fawzul; Minev, Ivan R.; Pietzsch, Jens; Zhang, YixinSynthetic conductive biopolymers have gained increasing interest in tissue engineering, as they can provide a chemically defined electroconductive and biomimetic microenvironment for cells. In addition to low cytotoxicity and high biocompatibility, injectability and adhesiveness are important for many biomedical applications but have proven to be very challenging. Recent results show that fascinating material properties can be realized with a bioinspired hybrid network, especially through the synergy between irreversible covalent crosslinking and reversible noncovalent self-assembly. Herein, a polysaccharide-based conductive hydrogel crosslinked through noncovalent and reversible covalent reactions is reported. The hybrid material exhibits rheological properties associated with dynamic networks such as self-healing and stress relaxation. Moreover, through fine-tuning the network dynamics by varying covalent/noncovalent crosslinking content and incorporating electroconductive polymers, the resulting materials exhibit electroconductivity and reliable adhesive strength, at a similar range to that of clinically used fibrin glue. The conductive soft adhesives exhibit high cytocompatibility in 2D/3D cell cultures and can promote myogenic differentiation of myoblast cells. The heparin-containing electroconductive adhesive shows high biocompatibility in immunocompetent mice, both for topical application and as injectable materials. The materials could have utilities in many biomedical applications, especially in the area of cardiovascular diseases and wound dressing.
- ItemParticle dynamics and transport enhancement in a confined channel with position-dependent diffusivity([London] : IOP, 2020) Li, Yongge; Mei, Ruoxing; Xu, Yong; Kurths, Jürgen; Duan, Jinqiao; Metzler, RalfThis work focuses on the dynamics of particles in a confined geometry with position-dependent diffusivity, where the confinement is modelled by a periodic channel consisting of unit cells connected by narrow passage ways. We consider three functional forms for the diffusivity, corresponding to the scenarios of a constant (D 0), as well as a low (D m) and a high (D d) mobility diffusion in cell centre of the longitudinally symmetric cells. Due to the interaction among the diffusivity, channel shape and external force, the system exhibits complex and interesting phenomena. By calculating the probability density function, mean velocity and mean first exit time with the Itô calculus form, we find that in the absence of external forces the diffusivity D d will redistribute particles near the channel wall, while the diffusivity D m will trap them near the cell centre. The superposition of external forces will break their static distributions. Besides, our results demonstrate that for the diffusivity D d, a high dependence on the x coordinate (parallel with the central channel line) will improve the mean velocity of the particles. In contrast, for the diffusivity D m, a weak dependence on the x coordinate will dramatically accelerate the moving speed. In addition, it shows that a large external force can weaken the influences of different diffusivities; inversely, for a small external force, the types of diffusivity affect significantly the particle dynamics. In practice, one can apply these results to achieve a prominent enhancement of the particle transport in two- or three-dimensional channels by modulating the local tracer diffusivity via an engineered gel of varying porosity or by adding a cold tube to cool down the diffusivity along the central line, which may be a relevant effect in engineering applications. Effects of different stochastic calculi in the evaluation of the underlying multiplicative stochastic equation for different physical scenarios are discussed. © 2020 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft.
- ItemPath integral solutions for n-dimensional stochastic differential equations under α-stable Lévy excitation(College Park, Md : [Verlag nicht ermittelbar], 2023) Zan, Wanrong; Xu, Yong; Kurths, JürgenIn this paper, the path integral solutions for a general n-dimensional stochastic differential equations (SDEs) with α-stable Lévy noise are derived and verified. Firstly, the governing equations for the solutions of n-dimensional SDEs under the excitation of α-stable Lévy noise are obtained through the characteristic function of stochastic processes. Then, the short-time transition probability density function of the path integral solution is derived based on the Chapman-Kolmogorov-Smoluchowski (CKS) equation and the characteristic function, and its correctness is demonstrated by proving that it satisfies the governing equation of the solution of the SDE, which is also called the Fokker-Planck-Kolmogorov equation. Besides, illustrative examples are numerically considered for highlighting the feasibility of the proposed path integral method, and the pertinent Monte Carlo solution is also calculated to show its correctness and effectiveness.
- ItemQuantifying the parameter dependent basin of the unsafe regime of asymmetric Lévy-noise-induced critical transitions(Dordrecht [u.a.] : Springer, 2021) Ma, Jinzhong; Xu, Yong; Li, Yongge; Tian, Ruilan; Ma, Shaojuan; Kurths, J.In real systems, the unpredictable jump changes of the random environment can induce the critical transitions (CTs) between two non-adjacent states, which are more catastrophic. Taking an asymmetric Lévy-noise-induced tri-stable model with desirable, sub-desirable, and undesirable states as a prototype class of real systems, a prediction of the noise-induced CTs from the desirable state directly to the undesirable one is carried out. We first calculate the region that the current state of the given model is absorbed into the undesirable state based on the escape probability, which is named as the absorbed region. Then, a new concept of the parameter dependent basin of the unsafe regime (PDBUR) under the asymmetric Lévy noise is introduced. It is an efficient tool for approximately quantifying the ranges of the parameters, where the noise-induced CTs from the desirable state directly to the undesirable one may occur. More importantly, it may provide theoretical guidance for us to adopt some measures to avert a noise-induced catastrophic CT. © 2021, The Author(s).