Browsing by Author "Yang, Hong"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
- ItemEvapotranspiration simulations in ISIMIP2a—Evaluation of spatio-temporal characteristics with a comprehensive ensemble of independent datasets(Bristol : IOP Publ., 2018) Wartenburger, Richard; Seneviratne, Sonia I; Hirschi, Martin; Chang, Jinfeng; Ciais, Philippe; Deryng, Delphine; Elliott, Joshua; Folberth, Christian; Gosling, Simon N; Gudmundsson, Lukas; Henrot, Alexandra-Jane; Hickler, Thomas; Ito, Akihiko; Khabarov, Nikolay; Kim, Hyungjun; Leng, Guoyong; Liu, Junguo; Liu, Xingcai; Masaki, Yoshimitsu; Morfopoulos, Catherine; Müller, Christoph; Müller Schmied, Hannes; Nishina, Kazuya; Orth, Rene; Pokhrel, Yadu; Pugh, Thomas A M; Satoh, Yusuke; Schaphoff, Sibyll; Schmid, Erwin; Sheffield, Justin; Stacke, Tobias; Steinkamp, Joerg; Tang, Qiuhong; Thiery, Wim; Wada, Yoshihide; Wang, Xuhui; Weedon, Graham P; Yang, Hong; Zhou, TianActual land evapotranspiration (ET) is a key component of the global hydrological cycle and an essential variable determining the evolution of hydrological extreme events under different climate change scenarios. However, recently available ET products show persistent uncertainties that are impeding a precise attribution of human-induced climate change. Here, we aim at comparing a range of independent global monthly land ET estimates with historical model simulations from the global water, agriculture, and biomes sectors participating in the second phase of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2a). Among the independent estimates, we use the EartH2Observe Tier-1 dataset (E2O), two commonly used reanalyses, a pre-compiled ensemble product (LandFlux-EVAL), and an updated collection of recently published datasets that algorithmically derive ET from observations or observations-based estimates (diagnostic datasets). A cluster analysis is applied in order to identify spatio-temporal differences among all datasets and to thus identify factors that dominate overall uncertainties. The clustering is controlled by several factors including the model choice, the meteorological forcing used to drive the assessed models, the data category (models participating in the different sectors of ISIMIP2a, E2O models, diagnostic estimates, reanalysis-based estimates or composite products), the ET scheme, and the number of soil layers in the models. By using these factors to explain spatial and spatio-temporal variabilities in ET, we find that the model choice mostly dominates (24%–40% of variance explained), except for spatio-temporal patterns of total ET, where the forcing explains the largest fraction of the variance (29%). The most dominant clusters of datasets are further compared with individual diagnostic and reanalysis-based estimates to assess their representation of selected heat waves and droughts in the Great Plains, Central Europe and western Russia. Although most of the ET estimates capture these extreme events, the generally large spread among the entire ensemble indicates substantial uncertainties.
- ItemGlobal gridded crop model evaluation: Benchmarking, skills, deficiencies and implications(München : European Geopyhsical Union, 2017) Müller, Christoph; Elliott, Joshua; Chryssanthacopoulos, James; Arneth, Almut; Balkovic, Juraj; Ciais, Philippe; Deryng, Delphine; Folberth, Christian; Glotter, Michael; Hoek, Steven; Iizumi, Toshichika; Izaurralde, Roberto C.; Jones, Curtis; Khabarov, Nikolay; Lawrence, Peter; Liu, Wenfeng; Olin, Stefan; Pugh, Thomas A.M.; Ray, Deepak K.; Reddy, Ashwan; Rosenzweig, Cynthia; Ruane, Alex C.; Sakurai, Gen; Schmid, Erwin; Skalsky, Rastislav; Song, Carol X.; Wang, Xuhui; de Wit, Allard; Yang, HongCrop models are increasingly used to simulate crop yields at the global scale, but so far there is no general framework on how to assess model performance. Here we evaluate the simulation results of 14 global gridded crop modeling groups that have contributed historic crop yield simulations for maize, wheat, rice and soybean to the Global Gridded Crop Model Intercomparison (GGCMI) of the Agricultural Model Intercomparison and Improvement Project (AgMIP). Simulation results are compared to reference data at global, national and grid cell scales and we evaluate model performance with respect to time series correlation, spatial correlation and mean bias. We find that global gridded crop models (GGCMs) show mixed skill in reproducing time series correlations or spatial patterns at the different spatial scales. Generally, maize, wheat and soybean simulations of many GGCMs are capable of reproducing larger parts of observed temporal variability (time series correlation coefficients (r) of up to 0.888 for maize, 0.673 for wheat and 0.643 for soybean at the global scale) but rice yield variability cannot be well reproduced by most models. Yield variability can be well reproduced for most major producing countries by many GGCMs and for all countries by at least some. A comparison with gridded yield data and a statistical analysis of the effects of weather variability on yield variability shows that the ensemble of GGCMs can explain more of the yield variability than an ensemble of regression models for maize and soybean, but not for wheat and rice. We identify future research needs in global gridded crop modeling and for all individual crop modeling groups. In the absence of a purely observation-based benchmark for model evaluation, we propose that the best performing crop model per crop and region establishes the benchmark for all others, and modelers are encouraged to investigate how crop model performance can be increased. We make our evaluation system accessible to all crop modelers so that other modeling groups can also test their model performance against the reference data and the GGCMI benchmark.
- ItemThe Global Gridded Crop Model Intercomparison phase 1 simulation dataset(London : Nature Publ. Group, 2019) Müller, Christoph; Elliott, Joshua; Kelly, David; Arneth, Almut; Balkovic, Juraj; Ciais, Philippe; Deryng, Delphine; Folberth, Christian; Hoek, Steven; Izaurralde, Roberto C.; Jones, Curtis D.; Khabarov, Nikolay; Lawrence, Peter; Liu, Wenfeng; Olin, Stefan; Pugh, Thomas A. M.; Reddy, Ashwan; Rosenzweig, Cynthia; Ruane, Alex C.; Sakurai, Gen; Schmid, Erwin; Skalsky, Rastislav; Wang, Xuhui; de Wit, Allard; Yang, HongThe Global Gridded Crop Model Intercomparison (GGCMI) phase 1 dataset of the Agricultural Model Intercomparison and Improvement Project (AgMIP) provides an unprecedentedly large dataset of crop model simulations covering the global ice-free land surface. The dataset consists of annual data fields at a spatial resolution of 0.5 arc-degree longitude and latitude. Fourteen crop modeling groups provided output for up to 11 historical input datasets spanning 1901 to 2012, and for up to three different management harmonization levels. Each group submitted data for up to 15 different crops and for up to 14 output variables. All simulations were conducted for purely rainfed and near-perfectly irrigated conditions on all land areas irrespective of whether the crop or irrigation system is currently used there. With the publication of the GGCMI phase 1 dataset we aim to promote further analyses and understanding of crop model performance, potential relationships between productivity and environmental impacts, and insights on how to further improve global gridded crop model frameworks. We describe dataset characteristics and individual model setup narratives. © 2019, The Author(s).
- ItemMultimodel assessments of human and climate impacts on mean annual streamflow in China(Munich : EGU, 2019) Liu, Xingcai; Liu, Wenfeng; Yang, Hong; Tang, Qiuhong; Flörke, Martina; Masaki, Yoshimitsu; Müller Schmied, Hannes; Ostberg, Sebastian; Pokhrel, Yadu; Satoh, Yusuke; Wada, YoshihideHuman activities, as well as climate variability, have had increasing impacts on natural hydrological systems, particularly streamflow. However, quantitative assessments of these impacts are lacking on large scales. In this study, we use the simulations from six global hydrological models driven by three meteorological forcings to investigate direct human impact (DHI) and climate impact on streamflow in China. Results show that, in the sub-periods of 1971-1990 and 1991-2010, one-fifth to one-third of mean annual streamflow (MAF) was reduced due to DHI in northern basins, and much smaller ( 4 %) MAF was reduced in southern basins. From 1971-1990 to 1991-2010, total MAF changes range from-13%to 10%across basins wherein the relative contributions of DHI change and climate variability show distinct spatial patterns. DHI change caused decreases in MAF in 70% of river segments, but climate variability dominated the total MAF changes in 88% of river segments of China. In most northern basins, climate variability results in changes of-9% to 18% in MAF, while DHI change results in decreases of 2% to 8% in MAF. In contrast with the climate variability that may increase or decrease streamflow, DHI change almost always contributes to decreases in MAF over time, with water withdrawals supposedly being the major impact on streamflow. This quantitative assessment can be a reference for attribution of streamflow changes at large scales, despite remaining uncertainty. We highlight the significant DHI in northern basins and the necessity to modulate DHI through improved water management towards a better adaptation to future climate change. © 2019 Author(s).
- ItemParameterization-induced uncertainties and impacts of crop management harmonization in a global gridded crop model ensemble(San Francisco, California, US : PLOS, 2019) Folberth, Christian; Elliott, Joshua; Müller, Christoph; Balkovič, Juraj; Chryssanthacopoulos, James; Izaurralde, Roberto C.; Jones, Curtis D.; Khabarov, Nikolay; Liu, Wenfeng; Reddy, Ashwan; Schmid, Erwin; Skalský, Rastislav; Yang, Hong; Arneth, Almut; Ciais, Philippe; Deryng, Delphine; Lawrence, Peter J.; Olin, Stefan; Pugh, Thomas A.M.; Ruane, Alex C.; Wang, XuhuiGlobal gridded crop models (GGCMs) combine agronomic or plant growth models with gridded spatial input data to estimate spatially explicit crop yields and agricultural externalities at the global scale. Differences in GGCM outputs arise from the use of different biophysical models, setups, and input data. GGCM ensembles are frequently employed to bracket uncertainties in impact studies without investigating the causes of divergence in outputs. This study explores differences in maize yield estimates from five GGCMs based on the public domain field-scale model Environmental Policy Integrated Climate (EPIC) that participate in the AgMIP Global Gridded Crop Model Intercomparison initiative. Albeit using the same crop model, the GGCMs differ in model version, input data, management assumptions, parameterization, and selection of subroutines affecting crop yield estimates via cultivar distributions, soil attributes, and hydrology among others. The analyses reveal inter-annual yield variability and absolute yield levels in the EPIC-based GGCMs to be highly sensitive to soil parameterization and crop management. All GGCMs show an intermediate performance in reproducing reported yields with a higher skill if a static soil profile is assumed or sufficient plant nutrients are supplied. An in-depth comparison of setup domains for two EPIC-based GGCMs shows that GGCM performance and plant stress responses depend substantially on soil parameters and soil process parameterization, i.e. hydrology and nutrient turnover, indicating that these often neglected domains deserve more scrutiny. For agricultural impact assessments, employing a GGCM ensemble with its widely varying assumptions in setups appears the best solution for coping with uncertainties from lack of comprehensive global data on crop management, cultivar distributions and coefficients for agro-environmental processes. However, the underlying assumptions require systematic specifications to cover representative agricultural systems and environmental conditions. Furthermore, the interlinkage of parameter sensitivity from various domains such as soil parameters, nutrient turnover coefficients, and cultivar specifications highlights that global sensitivity analyses and calibration need to be performed in an integrated manner to avoid bias resulting from disregarded core model domains. Finally, relating evaluations of the EPIC-based GGCMs to a wider ensemble based on individual core models shows that structural differences outweigh in general differences in configurations of GGCMs based on the same model, and that the ensemble mean gains higher skill from the inclusion of structurally different GGCMs. Although the members of the wider ensemble herein do not consider crop-soil-management interactions, their sensitivity to nutrient supply indicates that findings for the EPIC-based sub-ensemble will likely become relevant for other GGCMs with the progressing inclusion of such processes.
- ItemProjecting Exposure to Extreme Climate Impact Events Across Six Event Categories and Three Spatial Scales(Hoboken, NJ : Wiley-Blackwell, 2020) Lange, Stefan; Volkholz, Jan; Geiger, Tobias; Zhao, Fang; Vega, Iliusi; Veldkamp, Ted; Reyer, Christopher P.O.; Warszawski, Lila; Huber, Veronika; Jägermeyr, Jonas; Schewe, Jacob; Bresch, David N.; Büchner, Matthias; Chang, Jinfeng; Ciais, Philippe; Dury, Marie; Emanuel, Kerry; Folberth, Christian; Gerten, Dieter; Gosling, Simon N.; Grillakis, Manolis; Hanasaki, Naota; Henrot, Alexandra-Jane; Hickler, Thomas; Honda, Yasushi; Ito, Akihiko; Khabarov, Nikolay; Koutroulis, Aristeidis; Liu, Wenfeng; Müller, Christoph; Nishina, Kazuya; Ostberg, Sebastian; Müller Schmied, Hannes; Seneviratne, Sonia I.; Stacke, Tobias; Steinkamp, Jörg; Thiery, Wim; Wada, Yoshihide; Willner, Sven; Yang, Hong; Yoshikawa, Minoru; Yue, Chao; Frieler, KatjaThe extent and impact of climate-related extreme events depend on the underlying meteorological, hydrological, or climatological drivers as well as on human factors such as land use or population density. Here we quantify the pure effect of historical and future climate change on the exposure of land and population to extreme climate impact events using an unprecedentedly large ensemble of harmonized climate impact simulations from the Inter-Sectoral Impact Model Intercomparison Project phase 2b. Our results indicate that global warming has already more than doubled both the global land area and the global population annually exposed to all six categories of extreme events considered: river floods, tropical cyclones, crop failure, wildfires, droughts, and heatwaves. Global warming of 2°C relative to preindustrial conditions is projected to lead to a more than fivefold increase in cross-category aggregate exposure globally. Changes in exposure are unevenly distributed, with tropical and subtropical regions facing larger increases than higher latitudes. The largest increases in overall exposure are projected for the population of South Asia. ©2020. The Authors.