Browsing by Author "Yang, Jiaying"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemArchitecture engineering of carbonaceous anodes for high‐rate potassium‐ion batteries(Hoboken, NJ : Wiley, 2021) Wu, Tianlai; Zhang, Weicai; Yang, Jiaying; Lu, Qiongqiong; Peng, Jing; Zheng, Mingtao; Xu, Fei; Liu, Yingliang; Liang, YeruThe limited lithium resource in earth's crust has stimulated the pursuit of alternative energy storage technologies to lithium‐ion battery. Potassium‐ion batteries (KIBs) are regarded as a kind of promising candidate for large‐scale energy storage owing to the high abundance and low cost of potassium resources. Nevertheless, further development and wide application of KIBs are still challenged by several obstacles, one of which is their fast capacity deterioration at high rates. A considerable amount of effort has recently been devoted to address this problem by developing advanced carbonaceous anode materials with diverse structures and morphologies. This review presents and highlights how the architecture engineering of carbonaceous anode materials gives rise to high‐rate performances for KIBs, and also the beneficial conceptions are consciously extracted from the recent progress. Particularly, basic insights into the recent engineering strategies, structural innovation, and the related advances of carbonaceous anodes for high‐rate KIBs are under specific concerns. Based on the achievements attained so far, a perspective on the foregoing, and proposed possible directions, and avenues for designing high‐rate anodes, are presented finally.
- ItemAtomic Sn–enabled high-utilization, large-capacity, and long-life Na anode(Washington, DC [u.a.] : Assoc., 2022) Xu, Fei; Qu, Changzhen; Lu, Qiongqiong; Meng, Jiashen; Zhang, Xiuhai; Xu, Xiaosa; Qiu, Yuqian; Ding, Baichuan; Yang, Jiaying; Cao, Fengren; Yang, Penghui; Jiang, Guangshen; Kaskel, Stefan; Ma, Jingyuan; Li, Liang; Zhang, Xingcai; Wang, HongqiangConstructing robust nucleation sites with an ultrafine size in a confined environment is essential toward simultaneously achieving superior utilization, high capacity, and long-term durability in Na metal-based energy storage, yet remains largely unexplored. Here, we report a previously unexplored design of spatially confined atomic Sn in hollow carbon spheres for homogeneous nucleation and dendrite-free growth. The designed architecture maximizes Sn utilization, prevents agglomeration, mitigates volume variation, and allows complete alloying-dealloying with high-affinity Sn as persistent nucleation sites, contrary to conventional spatially exposed large-size ones without dealloying. Thus, conformal deposition is achieved, rendering an exceptional capacity of 16 mAh cm−2 in half-cells and long cycling over 7000 hours in symmetric cells. Moreover, the well-known paradox is surmounted, delivering record-high Na utilization (e.g., 85%) and large capacity (e.g., 8 mAh cm−2) while maintaining extraordinary durability over 5000 hours, representing an important breakthrough for stabilizing Na anode.