Browsing by Author "Zherlitsyn, Sergei"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemImproved accuracy in high-frequency AC transport measurements in pulsed high magnetic fields([S.l.] : American Institute of Physics, 2020) Mitamura, Hiroyuki; Watanuki, Ryuta; Kampert, Erik; Förster, Tobias; Matsuo, Akira; Onimaru, Takahiro; Onozaki, Norimichi; Amou, Yuta; Wakiya, Kazuhei; Yamamoto, Isao; Matsumoto, Keisuke T.; Suzuki, Kazuya; Zherlitsyn, Sergei; Wosnitza, Joachim; Tokunaga, Masashi; Kindo, Koichi; Sakakibara, ToshiroWe show theoretically and experimentally that accurate transport measurements are possible even within the short time provided by pulsed magnetic fields. For this purpose, a new method has been devised, which removes the noise component of a specific frequency from the signal by taking a linear combination of the results of numerical phase detection using multiple integer periods. We also established a method to unambiguously determine the phase rotation angle in AC transport measurements using a frequency range of tens of kilohertz. We revealed that the dominant noise in low-frequency transport measurements in pulsed magnetic fields is the electromagnetic induction caused by mechanical vibrations of wire loops in inhomogeneous magnetic fields. These results strongly suggest that accurate transport measurements in short-pulsed magnets are possible when mechanical vibrations are well suppressed. © 2020 Author(s).
- ItemStrong anisotropy of the electron-phonon interaction in NbP probed by magnetoacoustic quantum oscillations(Woodbury, NY : Inst., 2020) Schindler, Clemens; Gorbunov, Denis; Zherlitsyn, Sergei; Galeski, Stanislaw; Schmidt, Marcus; Wosnitza, Jochen; Gooth, JohannesIn this study, we report on the observation of de Haas-van Alphen-type quantum oscillations (QOs) in the ultrasound velocity of NbP as well as "giant QOs"in the ultrasound attenuation in pulsed magnetic fields. The difference in the QO amplitude for different acoustic modes reveals a strong anisotropy of the effective deformation potential, which we estimate to be as high as 9eV for certain parts of the Fermi surface. Furthermore, the natural filtering of QO frequencies and the tracing of the individual Landau levels to the quantum limit allows for a more detailed investigation of the Fermi surface of NbP, as was previously achieved by means of analyzing QOs observed in magnetization or electrical resistivity. © 2020 authors. Published by the American Physical Society.