Browsing by Author "Zhou, L."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemOSL-dating of the Pleistocene-Holocene climatic transition in loess from China, Europe and North America, and evidence for accretionary pedogenesis(Amsterdam [u.a.] : Elsevier, 2021) Constantin, D.; Mason, J.A.; Veres, D.; Hambach, U.; Panaiotu, C.; Zeeden, C.; Zhou, L.; Marković, S.B.; Gerasimenko, N.; Avram, A.; Tecsa, V.; Groza-Sacaciu, S.M.; del Valle Villalonga, L.; Begy, R.; Timar-Gabor, A.Loess deposits intercalated by paleosols are detailed terrestrial archives of Quaternary climate variability providing information on the global dust cycle and landscape dynamics. Their paleoclimatic significance is often explored by quantifying their mineral magnetic properties due to their sensitivity to local/regional hydroclimate variability. Detailed chronological assessment of such regional proxy records around the climatic transitions allow a better understanding of how regional records react to major global climatic transitions such as the Pleistocene-Holocene climatic transition. Logs of high-resolution magnetic susceptibility and its frequency dependence were used as paleoclimatic proxies to define the environmental transition from the last glacial loess to the current interglacial soil as reflected in nine loess-paleosol sequences across the northern hemisphere, from the Chinese Loess Plateau, the southeastern European loess belt and the central Great Plains, USA. The onset of increase in magnetic susceptibility above typical loess values was used to assess the onset of, and developments during, the Pleistocene-Holocene climatic transition. High-resolution luminescence dating was applied on multiple grain-sizes (4–11 μm, 63–90 μm, 90–125 μm) of quartz extracts from the same sample in order to investigate the timing of Pleistocene-Holocene climatic transition in the investigated sites. The magnetic susceptibility signal shows a smooth and gradual increase for the majority of the sites from the typical low loess values to the interglacial ones. The initiation of this increase, interpreted as recording the initiation of the Pleistocene-Holocene climatic transition at each site, was dated to 14–17.5 ka or even earlier. Our chronological results highlight the need of combining paleoclimatic proxies (magnetic susceptibility) with absolute dating when investigating the Pleistocene-Holocene climatic transition as reflected by the evolution of this proxy in order to avoid chronostratigraphic misinterpretations in loess-paleosol records caused by simple pattern correlation. The detailed luminescence chronologies evidence the continuity of eolian mineral dust accumulation regardless of glacial or interglacial global climatic regimes. Coupled with magnetic susceptibility records this indicates that dust sedimentation and pedogenesis act simultaneously and result in a non-negligible accretional component in the formation of Holocene soils in loess regions across the Northern Hemisphere. The luminescence ages allowed the modeling of accumulation rates for the Holocene soil which are similar for European, Chinese and U.S.A. loess sites investigated and vary from 2 cm ka−1 to 9 cm ka−1. While accretional pedogenesis has often been implicitly or explicitly assumed in paleoclimatic interpretation of loess-paleosol sequences, especially in the Chinese Loess Plateau, our luminescence data add direct evidence for ongoing sedimentation as interglacial soils formed.
- ItemThe simulations of sulfuric acid concentration and new particle formation in an urban atmosphere in China(München : European Geopyhsical Union, 2013) Wang, Z.B.; Hu, M.; Mogensen, D.; Yue, D.L.; Zheng, J.; Zhang, R.Y.; Liu, Y.; Yuan, B.; Li, X.; Shao, M.; Zhou, L.; Wu, Z.J.; Wiedensohler, A.; Boy, M.Simulations of sulfuric acid concentration and new particle formation are performed by using the zero-dimensional version of the model MALTE (Model to predict new Aerosol formation in the Lower TropospherE) and measurements from the Campaign of Air Quality Research in Beijing and Surrounding areas (CAREBeijing) in 2008. Chemical reactions from the Master Chemical Mechanism version 3.2 (MCM v3.2) are used in the model. High correlation (slope = 0.72, R = 0.74) between the modelled and observed sulfuric acid concentrations is found during daytime (06:00–18:00). The aerosol dynamics are simulated by the University of Helsinki Multicomponent Aerosol (UHMA) model including several nucleation mechanisms. The results indicate that the model is able to predict the on- and offset of new particle formation in an urban atmosphere in China. In addition, the number concentrations of newly formed particles in kinetic-type nucleation including homogenous homomolecular (J=K[H2SO4]2) and homogenous heteromolecular nucleation involving organic vapours (J=Khet[H2SO4][Org]) are in satisfactory agreement with the observations. However, the specific organic compounds that possibly participate in the nucleation process should be investigated in further studies. For the particle growth, only a small fraction of the oxidized total organics condense onto the particles in polluted environments. Meanwhile, the OH and O3 oxidation mechanism contribute 5.5% and 94.5% to the volume concentration of small particles, indicating the particle growth is more controlled by the precursor gases and their oxidation by O3.