Astronomie
Permanent URI for this collection
Browse
Browsing Astronomie by Subject "500"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
- ItemDeformation characteristics of solid-state benzene as a step towards understanding planetary geology([London] : Nature Publishing Group UK, 2022) Zhang, Wenxin; Zhang, Xuan; Edwards, Bryce W.; Zhong, Lei; Gao, Huajian; Malaska, Michael J.; Hodyss, Robert; Greer, Julia R.Small organic molecules, like ethane and benzene, are ubiquitous in the atmosphere and surface of Saturn’s largest moon Titan, forming plains, dunes, canyons, and other surface features. Understanding Titan’s dynamic geology and designing future landing missions requires sufficient knowledge of the mechanical characteristics of these solid-state organic minerals, which is currently lacking. To understand the deformation and mechanical properties of a representative solid organic material at space-relevant temperatures, we freeze liquid micro-droplets of benzene to form ~10 μm-tall single-crystalline pyramids and uniaxially compress them in situ. These micromechanical experiments reveal contact pressures decaying from ~2 to ~0.5 GPa after ~1 μm-reduction in pyramid height. The deformation occurs via a series of stochastic (~5-30 nm) displacement bursts, corresponding to densification and stiffening of the compressed material during cyclic loading to progressively higher loads. Molecular dynamics simulations reveal predominantly plastic deformation and densified region formation by the re-orientation and interplanar shear of benzene rings, providing a two-step stiffening mechanism. This work demonstrates the feasibility of in-situ cryogenic nanomechanical characterization of solid organics as a pathway to gain insights into the geophysics of planetary bodies.
- ItemInner solar system material discovered in the Oort cloud(Washington, DC [u.a.] : Assoc., 2016) Meech, Karen J.; Yang, Bin; Kleyna, Jan; Hainaut, Olivier R.; Berdyugina, Svetlana; Keane, Jacqueline V.; Micheli, Marco; Morbidelli, Alessandro; Wainscoat, Richard J.We have observed C/2014 S3 (PANSTARRS), a recently discovered object on a cometary orbit coming from the Oort cloud that is physically similar to an inner main belt rocky S-type asteroid. Recent dynamical models successfully reproduce the key characteristics of our current solar system; some of these models require significant migration of the giant planets, whereas others do not. These models provide different predictions on the presence of rocky material expelled from the inner solar system in the Oort cloud. C/2014 S3 could be the key to verifying these predictions of the migration-based dynamical models. Furthermore, this object displays a very faint, weak level of comet-like activity, five to six orders of magnitude less than that of typical ice-rich comets on similar Orbits coming from the Oort cloud. For the nearly tailless appearance, we are calling C/2014 S3 a Manx object. Various arguments convince us that this activity is produced by sublimation of volatile ice, that is, normal cometary activity. The activity implies that C/2014 S3 has retained a tiny fraction of the water that is expected to be present at its formation distance in the inner solar system. We may be looking at fresh inner solar system Earth-forming material that was ejected from the inner solar system and preserved for billions of years in the Oort cloud.
- ItemA low pre-infall mass for the Carina dwarf galaxy from disequilibrium modeling([London] : Nature Publishing Group UK, 2015) Ural, Uğur; Wilkinson, Mark I.; Read, Justin I.; Walker, Matthew G.Dark matter-only simulations of galaxy formation predict many more subhalos around a Milky Way-like galaxy than the number of observed satellites. Proposed solutions require the satellites to inhabit dark matter halos with masses 109–1010Msun at the time they fell into the Milky Way. Here we use a modelling approach, independent of cosmological simulations, to obtain a pre-infall mass of Msun for one of the Milky Way’s satellites: Carina. This determination of a low halo mass for Carina can be accommodated within the standard model only if galaxy formation becomes stochastic in halos below ∼1010Msun. Otherwise Carina, the eighth most luminous Milky Way dwarf, would be expected to inhabit a significantly more massive halo. The implication of this is that a population of ‘dark dwarfs’ should orbit the Milky Way: halos devoid of stars and yet more massive than many of their visible counterparts.
- ItemThe sequence to hydrogenate coronene cations: A journey guided by magic numbers([London] : Macmillan Publishers Limited, part of Springer Nature, 2016) Cazaux, Stéphanie; Boschman, Leon; Rougeau, Nathalie; Reitsma, Geert; Hoekstra, Ronnie; Teillet-Billy, Dominique; Morisset, Sabine; Spaans, Marco; Schlathölter, ThomasThe understanding of hydrogen attachment to carbonaceous surfaces is essential to a wide variety of research fields and technologies such as hydrogen storage for transportation, precise localization of hydrogen in electronic devices and the formation of cosmic H2. For coronene cations as prototypical Polycyclic Aromatic Hydrocarbon (PAH) molecules, the existence of magic numbers upon hydrogenation was uncovered experimentally. Quantum chemistry calculations show that hydrogenation follows a site-specific sequence leading to the appearance of cations having 5, 11, or 17 hydrogen atoms attached, exactly the magic numbers found in the experiments. For these closed-shell cations, further hydrogenation requires appreciable structural changes associated with a high transition barrier. Controlling specific hydrogenation pathways would provide the possibility to tune the location of hydrogen attachment and the stability of the system. The sequence to hydrogenate PAHs, leading to PAHs with magic numbers of H atoms attached, provides clues to understand that carbon in space is mostly aromatic and partially aliphatic in PAHs. PAH hydrogenation is fundamental to assess the contribution of PAHs to the formation of cosmic H2.
- ItemUltracold atom interferometry in space([London] : Nature Publishing Group UK, 2021) Lachmann, Maike D.; Ahlers, Holger; Becker, Dennis; Dinkelaker, Aline N.; Grosse, Jens; Hellmig, Ortwin; Müntinga, Hauke; Schkolnik, Vladimir; Seidel, Stephan T.; Wendrich, Thijs; Wenzlawski, André; Carrick, Benjamin; Gaaloul, Naceur; Lüdtke, Daniel; Braxmaier, Claus; Ertmer, Wolfgang; Krutzik, Markus; Lämmerzahl, Claus; Peters, Achim; Schleich, Wolfgang P.; Sengstock, Klaus; Wicht, Andreas; Windpassinger, Patrick; Rasel, Ernst M.Bose-Einstein condensates (BECs) in free fall constitute a promising source for space-borne interferometry. Indeed, BECs enjoy a slowly expanding wave function, display a large spatial coherence and can be engineered and probed by optical techniques. Here we explore matter-wave fringes of multiple spinor components of a BEC released in free fall employing light-pulses to drive Bragg processes and induce phase imprinting on a sounding rocket. The prevailing microgravity played a crucial role in the observation of these interferences which not only reveal the spatial coherence of the condensates but also allow us to measure differential forces. Our work marks the beginning of matter-wave interferometry in space with future applications in fundamental physics, navigation and earth observation.
- ItemWorldwide variations in artificial skyglow([London] : Macmillan Publishers Limited, part of Springer Nature, 2015) Kyba, Christopher C.M.; Tong, Kai Pong; Bennie, Jonathan; Birriel, Ignacio; Birriel, Jennifer J.; Cool, Andrew; Danielsen, Arne; Davies, Thomas W.; den Outer, Peter N.; Edwards, William; Ehlert, Rainer; Falchi, Fabio; Fischer, Jürgen; Giacomelli, Andrea; Giubbilini, Francesco; Haaima, Marty; Hesse, Claudia; Heygster, Georg; Hölker, Franz; Inger, Richard; Jensen, Linsey J.; Kuechly, Helga U.; Kuehn, John; Langill, Phil; Lolkema, Dorien E.; Nagy, Matthew; Nievas, Miguel; Ochi, Nobuaki; Popow, Emil; Posch, Thomas; Puschnig, Johannes; Ruhtz, Thomas; Schmidt, Wim; Schwarz, Robert; Schwope, Axel; Spoelstra, Henk; Tekatch, Anthony; Trueblood, Mark; Walker, Constance E.; Weber, Michael; Welch, Douglas L.; Zamorano, Jaime; Gaston, Kevin J.Despite constituting a widespread and significant environmental change, understanding of artificial nighttime skyglow is extremely limited. Until now, published monitoring studies have been local or regional in scope and typically of short duration. In this first major international compilation of monitoring data we answer several key questions about skyglow properties. Skyglow is observed to vary over four orders of magnitude, a range hundreds of times larger than was the case before artificial light. Nearly all of the study sites were polluted by artificial light. A non-linear relationship is observed between the sky brightness on clear and overcast nights, with a change in behavior near the rural to urban landuse transition. Overcast skies ranged from a third darker to almost 18 times brighter than clear. Clear sky radiances estimated by the World Atlas of Artificial Night Sky Brightness were found to be overestimated by ~25%; our dataset will play an important role in the calibration and ground truthing of future skyglow models. Most of the brightly lit sites darkened as the night progressed, typically by ~5% per hour. The great variation in skyglow radiance observed from site-to-site and with changing meteorological conditions underlines the need for a long-term international monitoring program.
- ItemX-ray quasi-periodic eruptions from two previously quiescent galaxies(London [u.a.] : Nature Publ. Group, 2021) Arcodia, R.; Merloni, A.; Nandra, K.; Buchner, J.; Salvato, M.; Pasham, D.; Remillard, R.; Comparat, J.; Lamer, G.; Ponti, G.; Malyali, A.; Wolf, J.; Arzoumanian, Z.; Bogensberger, D.; Buckley, D.A.H.; Gendreau, K.; Gromadzki, M.; Kara, E.; Krumpe, M.; Markwardt, C.; Ramos-Ceja, M.E.; Rau, A.; Schramm, M.; Schwope, A.Quasi-periodic eruptions (QPEs) are very-high-amplitude bursts of X-ray radiation recurring every few hours and originating near the central supermassive black holes of galactic nuclei1,2. It is currently unknown what triggers these events, how long they last and how they are connected to the physical properties of the inner accretion flows. Previously, only two such sources were known, found either serendipitously or in archival data1,2, with emission lines in their optical spectra classifying their nuclei as hosting an actively accreting supermassive black hole3,4. Here we report observations of QPEs in two further galaxies, obtained with a blind and systematic search of half of the X-ray sky. The optical spectra of these galaxies show no signature of black hole activity, indicating that a pre-existing accretion flow that is typical of active galactic nuclei is not required to trigger these events. Indeed, the periods, amplitudes and profiles of the QPEs reported here are inconsistent with current models that invoke radiation-pressure-driven instabilities in the accretion disk5–9. Instead, QPEs might be driven by an orbiting compact object. Furthermore, their observed properties require the mass of the secondary object to be much smaller than that of the main body10, and future X-ray observations may constrain possible changes in their period owing to orbital evolution. This model could make QPEs a viable candidate for the electromagnetic counterparts of so-called extreme-mass-ratio inspirals11–13, with considerable implications for multi-messenger astrophysics and cosmology14,15.
- ItemXUV excitation followed by ultrafast non-adiabatic relaxation in PAH molecules as a femto-astrochemistry experiment([London] : Nature Publishing Group UK, 2015) Marciniak, A.; Despré, V.; Barillot, T.; Rouzée, A.; Galbraith, M.C.E.; Klei, J.; Yang, C.-H.; Smeenk, C.T.L.; Loriot, V.; Nagaprasad Reddy, S.; Tielens, A.G.G.M.; Mahapatra, S.; Kuleff, A.I.; Vrakking, M.J.J.; Lépine, F.Highly excited molecular species are at play in the chemistry of interstellar media and are involved in the creation of radiation damage in a biological tissue. Recently developed ultrashort extreme ultraviolet light sources offer the high excitation energies and ultrafast time-resolution required for probing the dynamics of highly excited molecular states on femtosecond (fs) (1 fs=10−15s) and even attosecond (as) (1 as=10−18 s) timescales. Here we show that polycyclic aromatic hydrocarbons (PAHs) undergo ultrafast relaxation on a few tens of femtoseconds timescales, involving an interplay between the electronic and vibrational degrees of freedom. Our work reveals a general property of excited radical PAHs that can help to elucidate the assignment of diffuse interstellar absorption bands in astrochemistry, and provides a benchmark for the manner in which coupled electronic and nuclear dynamics determines reaction pathways in large molecules following extreme ultraviolet excitation.