Biowissenschaften
Permanent URI for this collection
Browse
Browsing Biowissenschaften by Title
Now showing 1 - 20 of 756
Results Per Page
Sort Options
- Item3D‐Printed Bioreactor with Integrated Impedance Spectroscopy for Cell Barrier Monitoring(Weinheim : Wiley, 2021) Linz, Georg; Rauer, Sebastian Bernhard; Kuhn, Yasmin; Wennemaring, Simon; Siedler, Laura; Singh, Smriti; Wessling, MatthiasCell culture experiments often suffer from limited commercial availability of laboratory-scale bioreactors, which allow experiments to be conducted under flow conditions and additional online monitoring techniques. A novel 3D-printed bioreactor with a homogeneously distributed flow field enabling epithelial cell culture experiments and online barrier monitoring by integrated electrodes through electrical impedance spectroscopy (EIS) is presented. Transparent and conductive indium tin oxide glass as current-injecting electrodes allows direct visualization of the cells, while measuring EIS simultaneously. The bioreactor's design considers the importance of a homogeneous electric field by placing the voltage pick-up electrodes in the electrical field. The device's functionality is demonstrated by the cultivation of the epithelial cell line Caco-2 under continuous flow and monitoring of the cell layer by online EIS. The collected EIS data were fitted by an equivalent electric circuit, resulting in the cell layer's resistance and capacitance. This data is used to monitor the cell layer's reaction to ethylene glycol-bis-(2-aminoethyl ether)-N,N,N′,N′-tetraacetic acid and forskolin. These two model substances show the power of impedance spectroscopy as a non-invasive way to characterize cell barriers. In addition, the bioreactor design is available as a print-ready file in the Appendix, enabling its use for other scientific institutions.
- Item4D Biofabrication of fibrous artificial nerve graft for neuron regeneration(Bristol : IOP Publ., 2020) Apsite, Indra; Constante, Gissela; Dulle, Martin; Vogt, Lena; Caspari, Anja; Boccaccini, Aldo R.; Synytska, Alla; Salehi, Sahar; Ionov, LeonidIn this paper, we describe the application of the 4D biofabrication approach for the fabrication of artificial nerve graft. Bilayer scaffolds consisting of uniaxially aligned polycaprolactone-poly(glycerol sebacate) (PCL-PGS) and randomly aligned methacrylated hyaluronic acid (HA-MA) fibers were fabricated using electrospinning and further used for the culture of PC-12 neuron cells. Tubular structures form instantly after immersion of fibrous bilayer in an aqueous buffer and the diameter of obtained tubes can be controlled by changing bilayer parameters such as the thickness of each layer, overall bilayer thickness, and medium counterion concentration. Designed scaffolds showed a self-folded scroll-like structure with high stability after four weeks of real-time degradation. The significance of this research is in the fabrication of tuneable tubular nerve guide conduits that can simplify the current existing clinical treatment of neural injuries. © 2020 The Author(s). Published by IOP Publishing Ltd.
- ItemA Methodology for Vertical Translation Between Molecular and Organismal Level in Biological Feedback Loops(Cold Spring Harbor : Cold Spring Harbor Laboratory, NY, 2021-09-15) Dietrich, Johannes W.Feedback loops are among the primary network motifs in living organisms, ensuring survival via homeostatic control of key metabolites and physical properties. However, from a scientific perspective, their characterization is unsatisfactory, since the usual modelling methodology is incompatible with the physiological and biochemical basis of metabolic networks. Therefore, any “vertical translation”, i.e. the study of the correspondence between molecular and organismal levels of causality, is difficult and in most cases impossible. As a viable solution, we demonstrate an alternative modelling platform for biological feedback loops that is based on key biochemical principles, including mass action law, enzyme kinetics, binding of mediators to transporters and receptors, and basic pharmacological properties. Subsequently, we show how this framework can be used for translating from molecular to systems-level behaviour. Basic elements of the proposed modelling platform include Michaelis-Menten kinetics defining nonlinear dependence of the output y(t) on an input signal x(t) with the Hill-Langmuir equation y(t) = G * x(t)^n / (D + x(t)^n), non-competitive inhibition for linking stimulatory and inhibitory inputs with y(t) = G + x1(t) / ((D + x1(t) * (1 + x2(t) / KI)) and processing structures for distribution and elimination. Depending on the structure of the feedback loop, its equifinal (steady-state) behaviour can be solved in form of polynomials, with a quadratic equation for the simplest case with one feedback loop and a Hill exponent of 1, and higher-grade polynomials for additional feedback loops and/or integer Hill exponents > 1. As a companion to the analytical solution, a flexible class library (CyberUnits) facilitates computer simulations for studying the transitional behaviour of the feedback loop. Unlike other modelling strategies in biocybernetics and systems biology, this platform allows for straightforward translation from the statistical properties of single molecules on a “microscopic” level to the behaviour of the whole feedback loop on an organismal “macroscopic” level. An example is the Michaelis constant D, which is equivalent to (k–1 + k2) / k1, where k1, k–1 and k2 denote the rate constants for the association and dissociation of the enzyme-substrate or receptor-hormone complex, respectively. From the perspective of a single molecule the rate constants represent the probability (per unit time) that the corresponding reaction will happen in the subsequent time interval. Therefore 1/k represents the mean lifetime of the complex. Very similar considerations apply to the other described constants of the feedback loop. In summary, this modelling technique renders the translation from a molecular level to a systems perspective possible. In addition to providing new insights into the physiology of biological feedback loops, it may be a valuable tool for multiple disciplines of biomedical research, including drug design, molecular genetics and investigations on the effects of endocrine disruptors.
- ItemAbschätzung der regionalen Kohlenstoffbilanz von mitteleuropäischen Wäldern unter dem Aspekt des Globalen Wandels : Abschlußbericht(Hannover : Technische Informationsbibliothek (TIB), 2002) Suckow, Felicitas; Lasch, Petra; Klöcking, Beate; Hauf, Ylva; Badeck, Franz[no abstract available]
- ItemAchieving diffraction-limited resolution in soft-X-ray Fourier-transform holography(Amsterdam : Elsevier Science, 2020) Geilhufe, Jan; Pfau, Bastian; Günther, Christian M.; Schneider, Michael; Eisebitt, StefanThe spatial resolution of microscopic images acquired via X-ray Fourier-transform holography is limited by the source size of the reference wave and by the numerical aperture of the detector. We analyze the interplay between both influences and show how they are matched in practice. We further identify, how high spatial frequencies translate to imaging artifacts in holographic reconstructions where mainly the reference beam limits the spatial resolution. As a solution, three methods are introduced based on numerical post-processing of the reconstruction. The methods comprise apodization of the hologram, refocusing via wave propagation, and deconvolution using the transfer function of the imaging system. In particular for the latter two, we demonstrate that image details smaller than the source size of the reference beam can be recovered up to the diffraction limit of the hologram. Our findings motivate the intentional application of a large reference-wave source enhancing the image contrast in applications with low photon numbers such as single-shot experiments at free-electron lasers or imaging at laboratory sources.
- ItemAdaptation of a microbial community to demand-oriented biological methanation(London : BioMed Central, 2022) Khesali Aghtaei, Hoda; Püttker, Sebastian; Maus, Irena; Heyer, Robert; Huang, Liren; Sczyrba, Alexander; Reichl, Udo; Benndorf, DirkBackground: Biological conversion of the surplus of renewable electricity and carbon dioxide (CO2) from biogas plants to biomethane (CH4) could support energy storage and strengthen the power grid. Biological methanation (BM) is linked closely to the activity of biogas-producing Bacteria and methanogenic Archaea. During reactor operations, the microbiome is often subject to various changes, e.g., substrate limitation or pH-shifts, whereby the microorganisms are challenged to adapt to the new conditions. In this study, various process parameters including pH value, CH4 production rate, conversion yields and final gas composition were monitored for a hydrogenotrophic-adapted microbial community cultivated in a laboratory-scale BM reactor. To investigate the robustness of the BM process regarding power oscillations, the biogas microbiome was exposed to five hydrogen (H2)-feeding regimes lasting several days. Results: Applying various “on–off” H2-feeding regimes, the CH4 production rate recovered quickly, demonstrating a significant resilience of the microbial community. Analyses of the taxonomic composition of the microbiome revealed a high abundance of the bacterial phyla Firmicutes, Bacteroidota and Thermotogota followed by hydrogenotrophic Archaea of the phylum Methanobacteriota. Homo-acetogenic and heterotrophic fermenting Bacteria formed a complex food web with methanogens. The abundance of the methanogenic Archaea roughly doubled during discontinuous H2-feeding, which was related mainly to an increase in acetoclastic Methanothrix species. Results also suggested that Bacteria feeding on methanogens could reduce overall CH4 production. On the other hand, using inactive biomass as a substrate could support the growth of methanogenic Archaea. During the BM process, the additional production of H2 by fermenting Bacteria seemed to support the maintenance of hydrogenotrophic methanogens at non-H2-feeding phases. Besides the elusive role of Methanothrix during the H2-feeding phases, acetate consumption and pH maintenance at the non-feeding phase can be assigned to this species. Conclusions: Taken together, the high adaptive potential of microbial communities contributes to the robustness of BM processes during discontinuous H2-feeding and supports the commercial use of BM processes for energy storage. Discontinuous feeding strategies could be used to enrich methanogenic Archaea during the establishment of a microbial community for BM. Both findings could contribute to design and improve BM processes from lab to pilot scale.
- ItemAdaptive responses of animals to climate change are most likely insufficient([London] : Nature Publishing Group UK, 2019) Radchuk, Viktoriia; Reed, Thomas; Teplitsky, Céline; van de Pol, Martijn; Charmantier, Anne; Hassall, Christopher; Adamík, Peter; Adriaensen, Frank; Ahola, Markus P.; Arcese, Peter; Avilés, Jesús Miguel; Balbontin, Javier; Berg, Karl S.; Borras, Antoni; Burthe, Sarah; Clobert, Jean; Dehnhard, Nina; de Lope, Florentino; Dhondt, André A.; Dingemanse, Niels J.; Doi, Hideyuki; Eeva, Tapio; Fickel, Joerns; Filella, Iolanda; Fossøy, Frode; Goodenough, Anne E.; Hall, Stephen J. G.; Hansson, Bengt; Harris, Michael; Hasselquist, Dennis; Hickler, Thomas; Joshi, Jasmin; Kharouba, Heather; Martínez, Juan Gabriel; Mihoub, Jean-Baptiste; Mills, James A.; Molina-Morales, Mercedes; Moksnes, Arne; Ozgul, Arpat; Parejo, Deseada; Pilard, Philippe; Poisbleau, Maud; Rousset, Francois; Rödel, Mark-Oliver; Scott, David; Senar, Juan Carlos; Stefanescu, Constanti; Stokke, Bård G.; Kusano, Tamotsu; Tarka, Maja; Tarwater, Corey E.; Thonicke, Kirsten; Thorley, Jack; Wilting, Andreas; Tryjanowski, Piotr; Merilä, Juha; Sheldon, Ben C.; Pape Møller, Anders; Matthysen, Erik; Janzen, Fredric; Dobson, F. Stephen; Visser, Marcel E.; Beissinger, Steven R.; Courtiol, Alexandre; Kramer-Schadt, StephanieBiological responses to climate change have been widely documented across taxa and regions, but it remains unclear whether species are maintaining a good match between phenotype and environment, i.e. whether observed trait changes are adaptive. Here we reviewed 10,090 abstracts and extracted data from 71 studies reported in 58 relevant publications, to assess quantitatively whether phenotypic trait changes associated with climate change are adaptive in animals. A meta-analysis focussing on birds, the taxon best represented in our dataset, suggests that global warming has not systematically affected morphological traits, but has advanced phenological traits. We demonstrate that these advances are adaptive for some species, but imperfect as evidenced by the observed consistent selection for earlier timing. Application of a theoretical model indicates that the evolutionary load imposed by incomplete adaptive responses to ongoing climate change may already be threatening the persistence of species. © 2019, The Author(s).
- ItemAdhesion characteristics of PDMS surfaces during repeated pull-off force measurements(Hoboken, NJ : Wiley, 2010) Kroner, Elmar; Arzt, Eduard; Maboudian, RoyaTo mimic the adhesive effects of gecko toes, artificial surfaces have been manufactured recently using polydimethylsiloxanes (PDMS). However, the effects of repeated contacts on the adhesive properties remain largely unexplored. In this paper we report on the effect of repeated pull-off force measurements on the adhesion behavior of PDMS (polymer kit Sylgard 184, Dow Corning) tested with a borosilicate glass probe. A decrease in pull-off force with increase in number of test cycles is found until a plateau is reached. The initial value and the rate of change in pull-off force strongly depend on the sample preparation procedure, including curing time and cross-linking. It is proposed that the behavior is due to steady coverage of the probe with free oligomers. The results are crucial for developing reusable, durable, and residue-free bioinspired adhesives.
- ItemAdvanced Hybrid GaN/ZnO Nanoarchitectured Microtubes for Fluorescent Micromotors Driven by UV Light(Weinheim : Wiley-VCH, 2020) Wolff, Niklas; Ciobanu, Vladimir; Enachi, Mihail; Kamp, Marius; Braniste, Tudor; Duppel, Viola; Shree, Sindu; Raevschi, Simion; Medina-Sánchez, Mariana; Adelung, Rainer; Schmidt, Oliver G.; Kienle, Lorenz; Tiginyanu, IonThe development of functional microstructures with designed hierarchical and complex morphologies and large free active surfaces offers new potential for improvement of the pristine microstructures properties by the synergistic combination of microscopic as well as nanoscopic effects. In this contribution, dedicated methods of transmission electron microscopy (TEM) including tomography are used to characterize the complex hierarchically structured hybrid GaN/ZnO:Au microtubes containing a dense nanowire network on their interior. The presence of an epitaxially stabilized and chemically extremely stable ultrathin layer of ZnO on the inner wall of the produced GaN microtubes is evidenced. Gold nanoparticles initially trigger the catalytic growth of solid solution phase (Ga1– xZnx)(N1– xOx) nanowires into the interior space of the microtube, which are found to be terminated by AuGa-alloy nanodots coated in a shell of amorphous GaOx species after the hydride vapor phase epitaxy process. The structural characterization suggests that this hierarchical design of GaN/ZnO microtubes could offer the potential to exhibit improved photocatalytic properties, which are initially demonstrated under UV light irradiation. As a proof of concept, the produced microtubes are used as photocatalytic micromotors in the presence of hydrogen peroxide solution with luminescent properties, which are appealing for future environmental applications and active matter fundamental studies. © 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
- ItemAdvances in Understanding and Managing Catastrophic Ecosystem Shifts in Mediterranean Ecosystems(Lausanne : Frontiers Media, 2020) van den Elsen, Erik; Stringer, Lindsay C.; De Ita, Cecilia; Hessel, Rudi; Kéfi, Sonia; Schneider, Florian D.; Bautista, Susana; Mayor, Angeles G.; Baudena, Mara; Rietkerk, Max; Valdecantos, Alejandro; Vallejo, Victoriano R.; Geeson, Nichola; Brandt, C. Jane; Fleskens, Luuk; Hemerik, Lia; Panagos, Panos; Valente, Sandra; Keizer, Jan J.; Schwilch, Gudrun; Jucker Riva, Matteo; Sietz, Diana; Christoforou, Michalakis; Hadjimitsis, Diofantos G.; Papoutsa, Christiana; Quaranta, Giovanni; Salvia, Rosanna; Tsanis, Ioannis K.; Daliakopoulos, Ioannis; Claringbould, Heleen; de Ruiter, Peter C.One of the most challenging issues in Mediterranean ecosystems to date has been to understand the emergence of discontinuous changes or catastrophic shifts. In the era of the 2030 Sustainable Development Goals, which encompass ideas around Land Degradation Neutrality, advancing this understanding has become even more critical and urgent. The aim of this paper is to synthesize insights into the drivers, processes and management of catastrophic shifts to highlight ways forward for the management of Mediterranean ecosystems. We use a multidisciplinary approach that extends beyond the typical single site, single scale, single approach studies in the current literature. We link applied and theoretical ecology at multiple scales with analyses and modeling of human–environment–climate relations and stakeholder engagement in six field sites in Mediterranean ecosystems to address three key questions: How do major degradation drivers affect ecosystem functioning and services in Mediterranean ecosystems? What processes happen in the soil and vegetation during a catastrophic shift? How can management of vulnerable ecosystems be optimized using these findings? Drawing together the findings from the use of different approaches allows us to address the whole pipeline of changes from drivers through to action. We highlight ways to assess ecosystem vulnerability that can help to prevent ecosystem shifts to undesirable states; identify cost-effective management measures that align with the vision and plans of land users; and evaluate the timing of these measures to enable optimization of their application before thresholds are reached. Such a multidisciplinary approach enables improved identification of early warning signals for discontinuous changes informing more timely and cost-effective management, allowing anticipation of, adaptation to, or even prevention of, undesirable catastrophic ecosystem shifts. © Copyright © 2020 van den Elsen, Stringer, De Ita, Hessel, Kéfi, Schneider, Bautista, Mayor, Baudena, Rietkerk, Valdecantos, Vallejo, Geeson, Brandt, Fleskens, Hemerik, Panagos, Valente, Keizer, Schwilch, Jucker Riva, Sietz, Christoforou, Hadjimitsis, Papoutsa, Quaranta, Salvia, Tsanis, Daliakopoulos, Claringbould and de Ruiter.
- ItemAerogels based on reduced graphene oxide/cellulose composites: Preparation and vapour sensing abilities(Basel : MDPI, 2020) Chen, Yian; Pötschke, Petra; Pionteck, Jürgen; Voit, Brigitte; Qi, HaisongThis paper reports on the preparation of cellulose/reduced graphene oxide (rGO) aerogels for use as chemical vapour sensors. Cellulose/rGO composite aerogels were prepared by dissolving cellulose and dispersing graphene oxide (GO) in aqueous NaOH/urea solution, followed by an in-situ reduction of GO to reduced GO (rGO) and lyophilisation. The vapour sensing properties of cellulose/rGO composite aerogels were investigated by measuring the change in electrical resistance during cyclic exposure to vapours with varying solubility parameters, namely water, methanol, ethanol, acetone, toluene, tetrahydrofuran (THF), and chloroform. The increase in resistance of aerogels on exposure to vapours is in the range of 7 to 40% with methanol giving the highest response. The sensing signal increases almost linearly with the vapour concentration, as tested for methanol. The resistance changes are caused by the destruction of the conductive filler network due to a combination of swelling of the cellulose matrix and adsorption of vapour molecules on the filler surfaces. This combined mechanism leads to an increased sensing response with increasing conductive filler content. Overall, fast reaction, good reproducibility, high sensitivity, and good differentiation ability between different vapours characterize the detection behaviour of the aerogels. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
- ItemAffinity for the Interface Underpins Potency of Antibodies Operating In Membrane Environments(Maryland Heights, MO : Cell Press, 2020) Rujas, Edurne; Insausti, Sara; Leaman, Daniel P.; Carravilla, Pablo; González-Resines, Saul; Monceaux, Valérie; Sánchez-Eugenia, Rubén; Garcıá-Porras, Miguel; Iloro, Ibon; Zhang, Lei; Elortza, Félix; Julien, Jean-Philippe; Saéz-Cirión, Asier; Zwick, Michael B.; Eggeling, Christian; Ojida, Akio; Domene, Carmen; Caaveiro, Jose M.M.; Nieva, José L.The contribution of membrane interfacial interactions to recognition of membrane-embedded antigens by antibodies is currently unclear. This report demonstrates the optimization of this type of antibodies via chemical modification of regions near the membrane but not directly involved in the recognition of the epitope. Using the HIV-1 antibody 10E8 as a model, linear and polycyclic synthetic aromatic compounds are introduced at selected sites. Molecular dynamics simulations predict the favorable interactions of these synthetic compounds with the viral lipid membrane, where the epitope of the HIV-1 glycoprotein Env is located. Chemical modification of 10E8 with aromatic acetamides facilitates the productive and specific recognition of the native antigen, partially buried in the crowded environment of the viral membrane, resulting in a dramatic increase of its capacity to block viral infection. These observations support the harnessing of interfacial affinity through site-selective chemical modification to optimize the function of antibodies that target membrane-proximal epitopes. © 2020 The Author(s)Rujas et al. describe the site-selective chemical modification of antibodies to improve the molecular recognition of epitopes at membrane surfaces. The modification using aromatic compounds dramatically enhanced the virus neutralization potency and native antigen binding efficiency of HIV-1 antibodies directed against the membrane-embedded MPER epitope. © 2020 The Author(s)
- ItemAgeing-associated small RNA cargo of extracellular vesicles(Philadelphia, Pa. : Taylor & Francis, 2023) Kern, Fabian; Kuhn, Thomas; Ludwig, Nicole; Simon, Martin; Gröger, Laura; Fabis, Natalie; Aparicio-Puerta, Ernesto; Salhab, Abdulrahman; Fehlmann, Tobias; Hahn, Oliver; Engel, Annika; Wagner, Viktoria; Koch, Marcus; Winek, Katarzyna; Soreq, Hermona; Nazarenko, Irina; Fuhrmann, Gregor; Wyss-Coray, Tony; Meese, Eckart; Keller, Verena; Laschke, Matthias W.; Keller, AndreasPrevious work on murine models and humans demonstrated global as well as tissue-specific molecular ageing trajectories of RNAs. Extracellular vesicles (EVs) are membrane vesicles mediating the horizontal transfer of genetic information between different tissues. We sequenced small regulatory RNAs (sncRNAs) in two mouse plasma fractions at five time points across the lifespan from 2–18 months: (1) sncRNAs that are free-circulating (fc-RNA) and (2) sncRNAs bound outside or inside EVs (EV-RNA). Different sncRNA classes exhibit unique ageing patterns that vary between the fcRNA and EV-RNA fractions. While tRNAs showed the highest correlation with ageing in both fractions, rRNAs exhibited inverse correlation trajectories between the EV- and fc-fractions. For miRNAs, the EV-RNA fraction was exceptionally strongly associated with ageing, especially the miR-29 family in adipose tissues. Sequencing of sncRNAs and coding genes in fat tissue of an independent cohort of aged mice up to 27 months highlighted the pivotal role of miR-29a-3p and miR-29b-3p in ageing-related gene regulation that we validated in a third cohort by RT-qPCR.
- ItemAge–depth model of the past 630 kyr for Lake Ohrid (FYROM/Albania) based on cyclostratigraphic analysis of downhole gamma ray data(Katlenburg-Lindau : European Geosciences Union, 2015) Baumgarten, H.; Wonik, T.; Tanner, D.C.; Francke, A.; Wagner, B.; Zanchetta, G.; Sulpizio, R.; Giaccio, B.; Nomade, S.Gamma ray (GR) fluctuations and potassium (K) values from downhole logging data obtained in the sediments of Lake Ohrid from 0 to 240 m below lake floor (b.l.f). correlate with fluctuations in δ18O values from the global benthic isotope stack LR04 (Lisiecki and Raymo, 2005). GR and K values are considered a reliable proxy to depict glacial-interglacial cycles, with high clastic input during cold and/or drier periods and high carbonate precipitation during warm and/or humid periods at Lake Ohrid. Spectral analysis was applied to investigate the climate signal and evolution over the length of the borehole. Linking downhole logging data with orbital cycles was used to estimate sedimentation rates and the effect of compaction was compensated for. Sedimentation rates increase on average by 14 % after decompaction of the sediment layers and the mean sedimentation rates shift from 45 cm kyr-1 between 0 and 110 m to 30 cm kyr-1 from 110 to 240 m b.l.f. Tuning of minima and maxima of gamma ray and potassium values versus LR04 extrema, in combination with eight independent tephrostratigraphical tie points, allows establishing of a robust age model for the downhole logging data over the past 630 kyr. © Author(s) 2015.
- ItemAggregation and mobility of membrane proteins interplay with local lipid order in the plasma membrane of T cells(Chichester : Wiley, 2021) Urbančič, Iztok; Schiffelers, Lisa; Jenkins, Edward; Gong, Weijian; Santos, Ana Mafalda; Schneider, Falk; O'Brien-Ball, Caitlin; Vuong, Mai Tuyet; Ashman, Nicole; Sezgin, Erdinc; Eggeling, ChristianTo disentangle the elusive lipid-protein interactions in T-cell activation, we investigate how externally imposed variations in mobility of key membrane proteins (T-cell receptor [TCR], kinase Lck, and phosphatase CD45) affect the local lipid order and protein colocalisation. Using spectral imaging with polarity-sensitive membrane probes in model membranes and live Jurkat T cells, we find that partial immobilisation of proteins (including TCR) by aggregation or ligand binding changes their preference towards a more ordered lipid environment, which can recruit Lck. Our data suggest that the cellular membrane is poised to modulate the frequency of protein encounters upon alterations of their mobility, for example in ligand binding, which offers new mechanistic insight into the involvement of lipid-mediated interactions in membrane-hosted signalling events.
- ItemAgricultural fertilization with poultry manure results in persistent environmental contamination with the pathogen Clostridioides difficile(Oxford [u.a.] : Blackwell, 2021) Frentrup, Martinique; Thiel, Nadine; Junker, Vera; Behrens, Wiebke; Münch, Steffen; Siller, Paul; Kabelitz, Tina; Faust, Matthias; Indra, Alexander; Baumgartner, Stefanie; Schepanski, Kerstin; Amon, Thomas; Roesler, Uwe; Funk, Roger; Nübel, UlrichDuring a field experiment applying broiler manure for fertilization of agricultural land, we detected viable Clostridioides (also known as Clostridium) difficile in broiler faeces, manure, dust and fertilized soil. A large diversity of toxigenic C. difficile isolates was recovered, including PCR ribotypes common from human disease. Genomic relatedness of C. difficile isolates from dust and from soil, recovered more than 2 years after fertilization, traced their origins to the specific chicken farm that had delivered the manure. We present evidence of long-term contamination of agricultural soil with manure-derived C. difficile and demonstrate the potential for airborne dispersal of C. difficile through dust emissions during manure application. Clostridioides genome sequences virtually identical to those from manure had been recovered from chicken meat and from human infections in previous studies, suggesting broiler-associated C. difficile are capable of zoonotic transmission.
- ItemAgriculture's Historic Twin-Challenge Toward Sustainable Water Use and Food Supply for All(Lausanne : Frontiers Media, 2020) Jägermeyr, JonasA sustainable and just future, envisioned by the UN's 2030 Agenda for Sustainable Development, puts agricultural systems under a heavy strain. The century-old quandary to provide ever-growing human populations with sufficient food takes on a new dimension with the recognition of environmental limits for agricultural resource use. To highlight challenges and opportunities toward sustainable food security in the twenty first century, this perspective paper provides a historical account of the escalating pressures on agriculture and freshwater resources alike, supported by new quantitative estimates of the ascent of excessive human water use. As the transformation of global farming into sustainable forms is unattainable without a revolution in agricultural water use, water saving and food production potentials are put into perspective with targets outlined by the Sustainable Development Goals (SDGs). The literature body and here-confirmed global estimates of untapped opportunities in farm water management indicate that these measures could sustainably intensify today's farming systems at scale. While rigorous implementation of sustainable water withdrawals (SDG 6.4) might impinge upon 5% of global food production, scaling-up water interventions in rainfed and irrigated systems could over-compensate such losses and further increase global production by 30% compared to the current situation (SDG 2.3). Without relying on future technological fixes, traditional on-farm water and soil management provides key strategies associated with important synergies that needs better integration into agro-ecological landscape approaches. Integrated strategies for sustainable intensification of agriculture within planetary boundaries are a potential way to attain several SDGs, but they are not yet receiving attention from high-level development policies. © Copyright © 2020 Jägermeyr.
- ItemAirborne bacterial emission fluxes from manure-fertilized agricultural soil(Oxford : Wiley-Blackwell, 2020) Thiel, Nadine; Münch, Steffen; Behrens, Wiebke; Junker, Vera; Faust, Matthias; Biniasch, Oliver; Kabelitz, Tina; Siller, Paul; Boedeker, Christian; Schumann, Peter; Roesler, Uwe; Amon, Thomas; Schepanski, Kerstin; Funk, Roger; Nübel, UlrichThis is the first study to quantify the dependence on wind velocity of airborne bacterial emission fluxes from soil. It demonstrates that manure bacteria get aerosolized from fertilized soil more easily than soil bacteria, and it applies bacterial genomic sequencing for the first time to trace environmental faecal contamination back to its source in the chicken barn. We report quantitative, airborne emission fluxes of bacteria during and following the fertilization of agricultural soil with manure from broiler chickens. During the fertilization process, the concentration of airborne bacteria culturable on blood agar medium increased more than 600 000-fold, and 1 m3 of air carried 2.9 × 105 viable enterococci, i.e. indicators of faecal contamination which had been undetectable in background air samples. Trajectory modelling suggested that atmospheric residence times and dispersion pathways were dependent on the time of day at which fertilization was performed. Measurements in a wind tunnel indicated that airborne bacterial emission fluxes from freshly fertilized soil under local climatic conditions on average were 100-fold higher than a previous estimate of average emissions from land. Faecal bacteria collected from soil and dust up to seven weeks after fertilization could be traced to their origins in the poultry barn by genomic sequencing. Comparative analyses of 16S rRNA gene sequences from manure, soil and dust showed that manure bacteria got aerosolized preferably, likely due to their attachment to low-density manure particles. Our data show that fertilization with manure may cause substantial increases of bacterial emissions from agricultural land. After mechanical incorporation of manure into soil, however, the associated risk of airborne infection is low.
- ItemAirflow resistance of two hop varieties(Tartu : Estonian Agricultural University, Faculty of Agronomy, 2021) Ziegler, T.; Teodorov, T.The quality of hops used in brewing is substantially reliant upon the processing step of drying. To ensure effective drying in kiln as well conveyor-belt dryers, homogeneous distribution of air is of particular importance. Uneven air distribution often results in inefficient drying and nonuniform moisture content of the hop cones. The air distribution naturally is governed by the airflow resistances in the individual floors or belts of a dryer. Hence, in order to quantify the airflow resistance of hop cones at different air velocities and bed heights, systematic measurements were carried out. In addition to determining the bulk densities of hops, the investigations included trials with fresh and dried hop samples. Clear differences were observed between hop varieties both in measured pressure drops and in bulk densities. Moreover, in the case of fresh hops, a non-linear increase in pressure drop with bed height was ascertained. Semiempirical equations were developed to describe pressure drop as a function of air velocity. This work will contribute to the design of dryers with optimum airflow distribution and thus enhance the efficiency of drying as well as the product quality.
- ItemAll-Conjugated Polymer Core-Shell and Core-Shell-Shell Particles with Tunable Emission Profiles and White Light Emission(Weinheim : Wiley-VCH, 2021) Haehnle, Bastian; Schuster, Philipp A.; Chen, Lisa; Kuehne, Alexander J. C.Future applications of conjugated polymer particles (CPP) in medicine, organic photonics, and optoelectronics greatly depend on high performance and precisely adjustable optical properties of the particles. To meet these criteria, current particle systems often combine conjugated polymers with inorganic particles in core-shell geometries, extending the possible optical characteristics of CPP. However, current conjugated polymer particles are restricted to a single polymer phase composed of a distinct polymer or a polymer blend. Here, a synthetic toolbox is presented that enables the synthesis of monodisperse core-shell and core-shell-shell particles, which consist entirely of conjugated polymers but of different types in the core and the shells. Seeded and fed-batch dispersion polymerizations based on Suzuki-Miyaura-type cross-coupling are investigated. The different approaches allow accurate control over the created interface between the conjugated polymer phases and thus also over the energy transfer phenomena between them. This approach opens up completely new synthetic freedom for fine tuning of the optical properties of CPP, enabling, for example, the synthesis of individual white light-emitting particles.